Giải bài tập toán lớp 11 kết nối tri thức bài 18 Lũy thừa với số mũ thực

Giải bài 18: Lũy thừa với số mũ thực sách toán lớp 11 tập 2 kết nối tri thức

Trang sách này cung cấp phần đáp án và hướng dẫn giải chi tiết cho các bài tập trong chương trình học của sách giáo khoa. Bài 18 chủ yếu xoay quanh vấn đề về lũy thừa với số mũ thực, giúp học sinh hiểu rõ hơn về kiến thức toán học cơ bản.

Thông qua việc giải các bài tập, các em học sinh sẽ được hướng dẫn cách giải quyết các vấn đề liên quan đến lũy thừa, từ đó nắm vững và áp dụng kiến thức vào thực tế. Hy vọng sách sẽ giúp các em hiểu và áp dụng kiến thức của mình hiệu quả hơn trong quá trình học tập.

Bài tập và hướng dẫn giải

1. LŨY THỪA VỚI SỐ MŨ NGUYÊN

Hoạt động 1 trang 5 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Nhân biết lũy thừa với số mũ nguyên

Tính $(1,5)^{2}$; $(-\frac{2}{3})^{2} $;$(\sqrt{2})^{4}$

Trả lời: Phương pháp giải:1. Để tính $(1,5)^2$, ta thực hiện phép nhân $1,5 \times 1,5$ và ta được kết quả là... Xem hướng dẫn giải chi tiết

Luyện tập 1 trang 5 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Một số dương x được gọi là viết dưới dạng kí hiệu khoa học nếu x = a . $10^{m}$, ở đó  $1 \leq a\leq 10$ và m là một số nguyên. Hãy viết các số liệu sau dưới dạng kí hiệu khoa học:

a) Khối lượng của Trái Đất khoảng 5 980 000 000 000 000 000 000 000 kg;

b) Khối lượng của hạt proton khoảng 0,000 000 000 000 000 000 000 000 001 67262 kg.

Trả lời: Để viết số liệu dưới dạng kí hiệu khoa học, ta cần chuyển số đó về dạng $$a \times 10^{m}$$. - Đối... Xem hướng dẫn giải chi tiết

2. LŨY THỪA VỚI SỐ MŨ HỮU TỈ

Hoạt động 2 trang 6 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Nhận biết khái niệm căn bậc n

a) Tìm tất cả các số thực x sao cho $x^{2} = 4$

b) Tìm tất cả các số thực x sao cho $x^{3}=-8$

Trả lời: Để giải phương trình $x^2 = 4$, ta sử dụng tính chất căn bậc hai: $\sqrt{x^2} = |x|$. Vậy $|x| = 2$,... Xem hướng dẫn giải chi tiết

Luyện tập 2 trang 6 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Tính

a)$\sqrt[3]{-125} $

b)$\sqrt[4]{\frac{1}{81}}$

Trả lời: Để giải câu hỏi trên, chúng ta cần nhớ rằng $\sqrt[3]{a^3} = a$ và $\sqrt[n]{a^n} = a$.a)... Xem hướng dẫn giải chi tiết

Hoạt động 3 trang 6 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Nhận biết tính chất của căn bậc n 

a) Tính và so sánh: $ \sqrt[3]{-8}. \sqrt[3]{27}  và \sqrt[3]{(-8).27} $

b) Tính và so sánh: $\frac{\sqrt[3]{-8}}{\sqrt[3]{27}} và \sqrt[3]{\frac{-8}{27}}$

Trả lời: Để giải câu hỏi trên, ta cần nhớ số mũ của căn bậc 3 khi nhân hay chia.Phương pháp giải:a) $... Xem hướng dẫn giải chi tiết

Luyện tập 3 trang 7 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Nhận biết lũy thừa với số mũ hữu tỉ

Cho a là một số thực dương.

a) Với n là số nguyên dương, hãy thử định nghĩa $a^{\frac{1}{n}}$ sao cho $(a^{\frac{1}{n}})^{n}=a$

b) Từ kết quả của câu a, hãy thử định nghĩa $a^{\frac{m}{n}}$, với m là số nguyên và n là số nguyên dương, sao cho $a^{\frac{m}{n}}= (a^{\frac{1}{n}})^{m}$

Trả lời: Để giải câu hỏi trên, chúng ta có thể sử dụng định nghĩa của lũy thừa với số mũ hữu tỉ để chứng minh... Xem hướng dẫn giải chi tiết

Luyện tập 4 trang 7 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Rút gọn biểu thức: 

$A= \frac{X^{\frac{3}{2}}Y + XY^{\frac{3}{2}}}{\sqrt{X}+\sqrt{Y}}$ (x,y>0)

Trả lời: Để rút gọn biểu thức $A= \frac{X^{\frac{3}{2}}Y + XY^{\frac{3}{2}}}{\sqrt{X}+\sqrt{Y}}$, ta thực... Xem hướng dẫn giải chi tiết

3. LŨY THỪA VỚI SỐ MŨ THỰC

a) Khái niệm lũy thừa với số mũ thực

Hoạt động 5 trang 7 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Nhận biết lũy thừa với số mũ thực

Ta biết rằng $\sqrt{2}$ là một số vô tỉ và $\sqrt{2}$ = 1,4142135624...

Gọi $r_{n}$ là dãy số hữu tỉ dùng để xấp xỉ số $\sqrt{2}$, với $r_{1}$ = 1; $r_{2}$=1,4; $r_{3}$ = 1,41; $r_{}$= 1,4142;...

a) Dùng máy tính cầm tay, hãy tính: $3^{r_{1}}$; $3^{r_{2}}$; $3^{r_{3}}$; $3^{r_{4}}$ và $3^{\sqrt{2}}$
b) Có nhận xét gì về sai số tuyệt đối giữa $3^{\sqrt{2}}$ và $3^{r_{n}}$, tức là |$3^{\sqrt{2}}$  $3^{r_{n}}$ |, khi n càng lớn?

Trả lời: Để giải câu hỏi trên, ta thực hiện các bước sau:a) Tính giá trị của $3^{r_{n}}$ với $n=1,2,3,4$ và... Xem hướng dẫn giải chi tiết

Luyện tập 5 trang 8 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Rút gọn biểu 

$A=\frac{(a^{\sqrt{2}-1})^{1+\sqrt{2}}}{a^{\sqrt{5}-1}.a^{3-\sqrt{5}}}$ (a>0)

Trả lời: Phương pháp giải:1. Rút gọn tử số:... Xem hướng dẫn giải chi tiết

Vận dụng trang 8 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Ngân hàng thường tính lãi suất cho khách hàng theo thể thức lãi kép theo định kì, tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Nếu một người gửi số tiền P với lãi suất r mỗi kì thì sau N kì, số tiền người đó thu được (cả vốn lẫn lãi) được tính theo công thức lãi kép sau:

$A=P(1+r)^{N}$

Bác Minh gửi tiết kiệm số tiền 100 triệu đồng kì hạn 12 tháng với lãi suất 6% một năm. Giả sử lãi suất không thay đổi. Tính số tiền (cả vốn lẫn lãi) bác Minh thu được sau 3 năm.

Trả lời: Để giải bài toán này, chúng ta thực hiện các bước sau:1. Xác định các thông số có trong bài toán:-... Xem hướng dẫn giải chi tiết

BÀI TẬP

Bài tập 6.1 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Tính 

a)$(\frac{1}{5})^{-2}$

b)$4^{\frac{3}{2}}$

c)$(\frac{1}{8}^{-\frac{2}{3}})$

d)$(\frac{1}{16})^{-0,75}$

Trả lời: Để giải các phép tính trong bài tập trên, ta có thể sử dụng các công thức sau:a) $(\frac{1}{a})^{-n}... Xem hướng dẫn giải chi tiết

Bài tập 6.2 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Thực hiện phép tính:

a)$27^{\frac{2}{3}}+81^{-0,75}-25^{0,5}$

b)$4^{2-3\sqrt{7}}.8^{2\sqrt{7}}$

Trả lời: Phương pháp giải:a) Ta có: $$27^{\frac{2}{3}}+81^{-0.75}-25^{0.5} = (\sqrt[3]{27})^2+\frac{1}{(81^{... Xem hướng dẫn giải chi tiết

Bài tập 6.3 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Rút gọn các biểu thức sau:

a)$A=\frac{X^{5}Y^{-2}}{X^{3}Y} (X,Y\neq 0)$

b)$B=\frac{X^{2}Y^{-3}}{(X^{-1}Y^{4})^{-3}} (X,Y\neq 0)$

Trả lời: Để rút gọn các biểu thức, ta thực hiện các bước sau:a) $A=\frac{X^{5}Y^{-2}}{X^{3}Y} =... Xem hướng dẫn giải chi tiết

Bài tập 6.4 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Cho x,y là các số thực dương. Rút gọn các biểu thưc sau:

a)$A=\frac{\mathrm{x}^{\frac{1}{3}}\sqrt{\mathrm{y}}+\mathrm{y}\frac{1}{3}}{\sqrt[6]{\mathrm{x}}+\sqrt[6]{\mathrm{y}}}$

b) $B=(\frac{\mathrm{x}^{\sqrt{3}}}{y^{\sqrt{3}-1}})^{\sqrt{3}+1}. \frac{x^{-\sqrt{3}-1}}{y^{-2}} $

Trả lời: Để giải bài toán trên, ta thực hiện các bước sau:**Giải phần a):**Để rút gọn biểu thức A, ta sử dụng... Xem hướng dẫn giải chi tiết

Bài tập 6.5 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Chưng minh rằng: $\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=2$

Trả lời: Để giải bài toán trên, ta sử dụng công thức:$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a+\sqrt{a^2-b}}{2}}... Xem hướng dẫn giải chi tiết

Bài tập 6.6 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Không sử dụng máy tính cầm tay, hãy so sánh: 

a)$5^{6\sqrt{3}}$ và $5^{3\sqrt{6}}$

b)$\left ( \frac{1}{2} \right )^{-\frac{4}{3}}$ và$ \sqrt{2}.2^{\frac{2}{3}}$

Trả lời: Phương pháp giải:a) Nếu $x > y > 0$ và $a > 1$, thì $a^x > a^y$. Áp dụng bất đẳng thức này với $x =... Xem hướng dẫn giải chi tiết

Bài tập 6.7 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT:  Nếu một khoản tiền gốc P được gửi ngân hàng với lãi suất hằng năm r ( được biểu thị dưới dạng số thập phân), được tính lãi n lần trong một năm, thì tổng số tiền A nhận được (cả vốn lẫn lãi) sau N kì gửi cho bởi công thức sau:

$A=P(1+\frac{r}{n})^{N}$

Hỏi nếu bác An gửi tiết kiệm số tiền 120 triệu đồng theo ki hạn 6 tháng với lãi suất không đổi là 5% một năm, thì số tiền thu được (cả vốn lẫn lãi) của bác An sau 2 năm là bao nhiêu?

Trả lời: Để giải bài toán trên, chúng ta sẽ áp dụng công thức tính tổng số tiền sau N kỳ gửi:$A =... Xem hướng dẫn giải chi tiết

Bài tập 6.8 trang 9 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Năm 2021, dân số của một quốc gia ở châu Á là 19 triệu người. Người ta ước tính rằng dân số của quốc gia này sẽ tăng gấp đôi sau 30 năm nữa. Khi đó dân số A (triệu người) của quốc gia đó sau t năm kể từ năm 2021 được ước tính bằng công thức $A=19.2^{\frac{1}{30}}$. Hỏi với tốc độ tăng dân số như vậy thì sau 20 năm nữa dân số của quốc gia này sẽ là bao nhiêu? (Làm tròn kết quả đến chữ số hàng triệu).

Trả lời: Để giải bài toán trên, ta có các bước sau:Bước 1: Tính số năm cần để dân số tăng gấp đôi từ 19 triệu... Xem hướng dẫn giải chi tiết
0.42484 sec| 2265.203 kb