Chương 1: Căn bậc hai. Căn bậc ba
- Bài 1: Căn bậc hai số học
- Bài 2: Các tính chất của căn bậc hai số học
- Bài 3: Luyện tập về phép nhân và phép khai phương
- Bài 4: Các tính chất của căn bậc hai số học (tiếp theo)
- Bài 5: Luyện tập về phép chia và phép khai phương
- Bài 6: Các căn thức bậc hai và các tính chất
- Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- Bài 8: Rút gọn biểu thức chứa căn bậc hai
- Bài 9: Căn bậc ba
- Bài 10: Ôn tập chương I
Chương 2. Hàm số bậc nhất
Chương 1. Hệ thức lượng trong tam giác vuông
- Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Bài 2: Luyện tập
- Bài 3: Tỉ số lượng giác của góc nhọn
- Bài 4: Sử dụng máy tính cầm tay để tính tỉ số lượng giác
- Bài 5: Một số hệ thức về cạnh và góc trong tam giác vuông
- Bài 6: Luyện tập
- Bài 7: Ứng dụng thực tế các tỉ số lượng giác của góc nhọn
- Bài 8: Ôn tập chương I
Chương 2. Đường tròn
- Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn
- Bài 2: Quan hệ giữa đường kính và dây cung của đường tròn
- Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Bài 4: Vị trí tương đối của đường thẳng và đường tròn. Tiếp tuyến của đường tròn
- Bài 5: Tính chất của hai tiếp tuyến cắt nhau
- Bài 6: Luyện tập (chương II)
- Bài 7: Vị trí tương đối của hai đường tròn
- Bài 8: Luyện tập
- Bài 9: Ôn tập chương II
Bài 8: Rút gọn biểu thức chứa căn bậc hai
https://s.shopee.vn/AKN2JyAJAw
Bài 8: Rút gọn biểu thức chứa căn bậc hai
Trong bài học này, chúng ta sẽ học cách rút gọn biểu thức có chứa căn thức bậc hai. Để làm điều này, chúng ta cần biết cách vận dụng các phép tính và phép biến đổi đã học như: đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, khử căn các biểu thức chứa căn để làm xuất hiện các căn thức bậc hai có cùng một biểu thức dưới dấu căn (căn đồng dạng).
Ví dụ 1: Rút gọn các biểu thức sau:
a) $\sqrt{\frac{3}{4}}$ + $\sqrt{\frac{1}{3}}$ + $\sqrt{\frac{1}{12}}$
b) $\frac{10}{9}$($\sqrt{0,8}$ + $\sqrt{1,25}$)
c) 4$\sqrt{\frac{2}{9}}$ + $\sqrt{2}$ + $\sqrt{\frac{1}{18}}$
d) $\frac{1}{\sqrt{5} - 1}$ - $\frac{1}{\sqrt{5} + 1}$
Chúng ta sẽ giải từng ví dụ một để hiểu rõ cách rút gọn biểu thức chứa căn bậc hai. Hy vọng rằng sau bài học này, các em sẽ nắm vững kiến thức và có thể áp dụng vào việc giải các bài tập liên quan đến chủ đề này.
Bài tập và hướng dẫn giải
C. HOẠT ĐỘNG LUYỆN TẬP
Câu 1: Trang 28 sách VNEN 9 tập 1
Rút gọn các biểu thức sau:
a) $\frac{1}{4}$$\sqrt{180}$ + $\sqrt{20}$ - $\sqrt{45}$ + 5 ; b) 3$\sqrt{\frac{1}{3}}$ + $\frac{1}{4}$$\sqrt{48}$ - 2$\sqrt{3}$ ;
c) $\sqrt{2a}$ - $\sqrt{18a^{3}}$ + 4$\sqrt{\frac{a}{2}}$ ; d) $\sqrt{\frac{a}{1 + 2b + b^{2}}}$.$\sqrt{\frac{4a + 8ab + 4ab^{2}}{225}}$.
Câu 2: Trang 28 sách VNEN 9 tập 1
Chứng minh các đẳng thức sau:
a) $\sqrt{\frac{2} - \sqrt{3}}{\frac{2} + \sqrt{3}}$ + $\sqrt{\frac{2} + \sqrt{3}}{\frac{2}- \sqrt{3}}$ = 4 ;
b) $\frac{\sqrt{a}}{\sqrt{a} - \sqrt{b}}$ - $\frac{\sqrt{b}}{\sqrt{a} + \sqrt{b}}$ - $\frac{2b}{a - b}$ = 1 với a $\geq $ 0, b $\geq $ 0, a $\neq $ b
c) $\left ( 1 + \frac{a + \sqrt{a}}{\sqrt{a} + 1} \right )$$\left ( 1 - \frac{a - \sqrt{a}}{\sqrt{a} - 1} \right )$ = 1 - a với a > 0, a $\neq $ 1.
Câu 3: Trang 28 sách VNEN 9 tập 1
Chứng minh rằng giá trị của biểu thức M không phụ thuộc vào a:
M = $\left ( \frac{1}{2 + 2\sqrt{a}} + \frac{1}{2 - 2\sqrt{a}} - \frac{a^{2} + 1}{1 - a^{2}} \right )$$\left ( 1 + \frac{1}{a} \right )$ với a > 0; a $\neq $ 1.
Câu 4: Trang 28 sách VNEN 9 tập 1
Tìm x, biết:
a) $\sqrt{3x}$ = 4 ; b) $\sqrt{3x}$ - $\frac{1}{2}$$\sqrt{3x}$ + $\frac{3}{4}$$\sqrt{3x}$ + 5 = 5$\sqrt{3x}$ ; c) $\sqrt{(1 - 2x)^{2}}$ = 2.
Câu 5: Trang 28 sách VNEN 9 tập 1
Cho biểu thức:
A = $\left ( \frac{3}{\sqrt{1 + a}} + \sqrt{1 - a} \right )$ : $\left ( \frac{3}{\sqrt{1 - a^{2}} + 1} \right )$ với - 1 < a < 1.
a) Rút gọn biểu thức A.
b) Tìm giá trị của A với a = $\frac{\sqrt{3}}{2 + \sqrt{3}}$.
c) Với giá trị nào của a thì $\sqrt{A}$ > A?
Câu 6: Trang 28 sách VNEN 9 tập 1
Cho M = $\frac{x\sqrt{x} - 1}{x - \sqrt{x}}$ - $\frac{x\sqrt{x} + 1}{x + \sqrt{x}}$ + $\frac{x + 1}{\sqrt{x}}$ với x > 0, x $\neq $ 1.
a) Rút gọn biểu thức M.
b) Tìm x để M = $\frac{9}{2}$.
c) So sánh M và 4.
D.E. HOẠT ĐỘNG VẬN DỤNG và TÌM TÒI, MỞ RỘNG
Câu 1: Trang 29 sách VNEN 9 tập 1
Phân tích ra thừa số:
a) x - 9 với x > 0 ; b) x - 5$\sqrt{x}$ + 4 ;
c) 6$\sqrt{xy}$ - 4x$\sqrt{x}$ - 9y$\sqrt{y}$ + 6xy ; d) x - 2$\sqrt{x - 1}$ - $a^{2}$.
Câu 2: Trang 29 sách VNEN 9 tập 1
Chứng minh các bất đẳng thức sau:
a) Cho a > 0 chứng minh rằng a + $\frac{1}{a}$ $\geq $ 2.
b) $\frac{a^{2} + a + 2}{\sqrt{a^{2} + a + 1}}$ $\geq $ 2 với mọi a.
c) $\sqrt{a + 1}$ - $\sqrt{a}$ < $\frac{1}{2\sqrt{a}}$ với a $\geq $ 1.
Câu 3: Trang 29 sách VNEN 9 tập 1
a) Cho a $\geq $ 0, b $\geq $ 0. Chứng minh rằng:
* $\sqrt{a + b}$ $\leq $ $\sqrt{a}$ + $\sqrt{b}$ ; * $\sqrt{a - b}$ $\geq $ $\sqrt{a}$ - $\sqrt{b}$
Áp dụng: Tìm giá trị nhỏ nhất của B = $\sqrt{x - 5}$ + $\sqrt{7 - x}$ và giá trị lớn nhất của C = $\sqrt{2x - 7}$ - $\sqrt{2x - 11}$.
Giải bài tập sách giáo khoa (SGK) lớp 9
- Soạn văn lớp 9 tập 1
- Soạn văn lớp 9 tập 2
- Soạn văn lớp 9 tập 1 giản lược
- Soạn văn lớp 9 tập 2 giản lược
- Giải bài tập sách giáo khoa (SGK) toán lớp 9 tập 1
- Giải bài tập sách giáo khoa (SGK) toán lớp 9 tập 2
- Giải bài tập sách giáo khoa (SGK) sinh học lớp 9
- Giải bài tập sách giáo khoa (SGK) hoá học lớp 9
- Giải bài tập sách giáo khoa (SGK) vật lí lớp 9
- Giải bài tập sách giáo khoa (SGK) địa lí lớp 9
- Giải bài tập sách giáo khoa (SGK) lịch sử lớp 9
- Giải bài tập sách giáo khoa (SGK) gdcd lớp 9
- Giải bài tập sách giáo khoa (SGK) tiếng anh lớp 9
- Giải bài tập mĩ thuật lớp 9 Đan Mạch
Giải bài tập sách giáo khoa (SGK) lớp 9 VNEN
- Soạn văn lớp 9 tập 1 VNEN
- Soạn văn lớp 9 tập 2 VNEN
- Soạn văn lớp 9 VNEN siêu ngắn
- Soạn văn lớp 9 VNEN tập 1 giản lược
- Soạn văn lớp 9 VNEN tập 2 giản lược
- Giải bài tập toán lớp 9 tập 1 VNEN
- Giải bài tập toán lớp 9 tâp 2 VNEN
- Giải bài tập khoa học tự nhiên lớp 9
- Giải bài tập khoa học xã hội lớp 9
- Giải bài tập gdcd lớp 9 VNEN
- Giải bài tập công nghệ lớp 9 VNEN
- Giải bài tập tin học lớp 9 VNEN
- Giải bài tập tiếng anh lớp 9 mới - Tập 1
- Giải bài tập tiếng anh lớp 9 mới - Tập 2
Tài liệu lớp 9
- Văn mẫu lớp 9
- Đề thi lên 10 Toán
- Đề thi môn Hóa lớp 9
- Đề thi môn Địa lớp 9
- Đề thi môn vật lí lớp 9
- Tập bản đồ địa lí lớp 9
- Ôn toán lớp 9 lên 10
- Ôn Ngữ văn lớp 9 lên 10
- Ôn tiếng anh lớp 9 lên 10
- Đề thi lên 10 chuyên Toán
- Chuyên đề ôn tập Hóa lớp 9
- Chuyên đề ôn tập Sử lớp 9
- Chuyên đề toán lớp 9
- Chuyên đề Địa Lý lớp 9
- Phát triển năng lực toán lớp 9 tập 1
- Bài tập phát triển năng lực toán lớp 9