VII. Cách vẽ đường ElipHoạt động 9.Vẽ elip (E): $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Câu hỏi:

VII. Cách vẽ đường Elip

Hoạt động 9. Vẽ elip (E): $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Câu trả lời:
Người trả lời: GV. Đỗ Hồng Giang
Phương pháp giải là:
Bước 1: Xác định a = 5, b = 3 và các đỉnh của elip là A1(– 5; 0), A2(5; 0), B1(0; – 3), B2(0; 3).
Bước 2: Vẽ hình chữ nhật cơ sở với các cạnh thuộc các đường thẳng x = – 5, x = 5, y = – 3, y = 3.
Bước 3: Tìm các điểm thuộc elip, ví dụ như M(4; 9/5) và N(3; 12/5).
Bước 4: Tìm các điểm đối xứng với M, N qua các trục để có thêm các điểm thuộc elip.
Bước 5: Vẽ elip đi qua các điểm đã tìm được và tiếp xúc với cạnh của hình chữ nhật cơ sở tại các đỉnh đã xác định.

Vậy câu trả lời cho câu hỏi này là: Vẽ elip (E): $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ sử dụng phương pháp trên.
Câu hỏi liên quan:
Bình luận (0)
Nhấn vào đây để đánh giá
Thông tin người gửi
1.12047 sec| 2165.523 kb