Giải bài tập chuyên đề toán lớp 10 cánh diều bài 1 Elip

Hướng dẫn giải chuyên đề bài 1 Elip

Trang 39 của sách chuyên đề toán lớp 10 cánh diều đưa ra bài tập về elip, một dạng hình học quen thuộc trong toán học. Bài tập này nhằm giúp học sinh phát triển năng lực vận dụng kiến thức và kỹ năng giải toán của mình.

Bằng cách hướng dẫn cụ thể và giải chi tiết, sách giúp học sinh hiểu rõ hơn về chuyên đề này. Điều này giúp họ nắm bắt bài học một cách chắc chắn và tự tin hơn khi giải các bài tương tự ở tương lai.

Với sự hỗ trợ từ sách giáo khoa và sự giải thích cặn kẽ, hy vọng rằng học sinh sẽ tiếp cận và làm quen với chuyên đề elip một cách dễ dàng và hiệu quả.

Bài tập và hướng dẫn giải

I. Tính đối xứng của Elip

Hoạt động 1. Trong mặt phẳng toạ độ Oxy, ta xét elip (E) có phương trình chính tắc là $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$, trong đó a > b > 0 (Hình 2).

Giải hoạt động 1 trang 39 Chuyên đề toán lớp 10 cánh diều

a) Tìm toạ độ hai tiêu điểm F1, F2 của (E).

b) (E) cắt trục Ox tại các điểm A1, A2 và cắt trục Oy tại các điểm B1, B2. Tìm độ dài các đoạn thẳng OA2 và OB2.

Trả lời: a) Phương pháp giải:- Tính đối xứng của Elip (E) là tìm hai tiêu điểm F1, F2 của (E) thông qua... Xem hướng dẫn giải chi tiết

Hoạt động 2. Trong mặt phẳng toạ độ Oxy, ta xét elip (E) có phương trình chính tắc là $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ trong đó a > b > 0. Cho điểm M(x; y) nằm trên (E) (Hình 3).

Giải hoạt động 2 trang 40 Chuyên đề toán lớp 10 cánh diều

a) Gọi M1 là điểm đối xứng của M qua trục Ox. Tìm toạ độ của điểm M1. Điểm M1 có nằm trên (E) hay không? Tại sao?

b) Gọi M2 là điểm đối xứng của M qua trục Oy. Tìm toạ độ của điểm M2. Điểm M2 có nằm trên (E) hay không? Tại sao?

c) Gọi M3 là điểm đối xứng của M qua gốc O. Tìm toạ độ của điểm M3. Điểm M3 có nằm trên (E) hay không? Tại sao?

Trả lời: Phương pháp giải:1. Ta có phương trình chính tắc của elip:... Xem hướng dẫn giải chi tiết

II. Hình chữ nhật cơ sở

Hoạt động 3. 

a) Nêu nhận xét về vị trí bốn đỉnh của elip (E) với bốn cạnh của hình chữ nhật cơ sở.

b) Cho điểm M(x; y) thuộc elip (E). Tìm giá trị nhỏ nhất và lớn nhất của x và của y

Trả lời: Phương pháp giải:a) Để chứng minh rằng bốn đỉnh của elip là trung điểm của các cạnh của hình chữ... Xem hướng dẫn giải chi tiết

Luyện tập 1. Viết phương trình chính tắc của elip, biết A1(– 4; 0) và B2(0; 2) là hai đỉnh của nó.

Trả lời: Để tìm được phương trình chính tắc của elip, ta cần biết rằng phương trình chính tắc của elip có... Xem hướng dẫn giải chi tiết

Hoạt động 4. Quan sát elip (E) có phương trinh chính tắc là $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ trong đó a > b > 0 và hình chữ nhật cơ sở PQRS của (E) (Hình 5).

Giải hoạt động 4 trang 41 Chuyên đề toán lớp 10 cánh diều

a) Tính tỉ số giữa hai cạnh $\frac{QR}{PQ}$ của hình chữ nhật PQRS.

b) Tỉ số $\frac{QR}{PQ}$ phản ánh đặc điểm gì của (E) về hình dạng?

Trả lời: a) Phương pháp giải:Để tính tỉ số giữa hai cạnh $\frac{QR}{PQ}$ của hình chữ nhật, ta cần tìm độ dài... Xem hướng dẫn giải chi tiết

III. Tâm sai của Elip

Luyện tập 2. Viết phương trình chính tắc của elip (E), biết tiêu cự bằng 12 và tâm sai bằng $\frac{3}{5}$

Trả lời: Để giải câu hỏi này, ta cần sử dụng các công thức liên quan đến elip, trong đó:1. Phương trình chính... Xem hướng dẫn giải chi tiết

IV. Bán kính qua tiêu của một điểm thuộc elip

Hoạt động 5. Giả sử đường elip (E) là tập hợp các điểm M trong mặt phẳng sao cho MF1 + MF2 = 2a, ở đó F1F2 = 2c với 0 < c < a. Ta chọn hệ trục tọa độ Oxy có gốc là trung điểm của đoạn thẳng F1F2. Trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 8).

Giải hoạt động 5 trang 43 Chuyên đề toán lớp 10 cánh diều

Khi đó, F1(– c; 0), F2(c; 0) là các tiêu điểm của elip (E). Giả sử điểm M(x; y) thuộc elip (E). Chứng minh rằng:

a) $MF1^{2} = x^{2} + 2cx + c^{2} + y^{2}$;

b) $MF2^{2} = x^{2} – 2cx + c^{2} + y^{2};$

c) $MF1^{2} – MF2^{2} = 4cx.$

Trả lời: Để chứng minh các bước trên, ta sử dụng định lí Pythagore trong tam giác vuông MF1M và MF2M.a) Ta có... Xem hướng dẫn giải chi tiết

Hoạt động 6. Sử dụng đẳng thức c) ở trên và đẳng thức MF1 + MF2 = 2a, chứng minh:

a) MF1 – MF2 = $\frac{2c}{a}x$

b) MF1 = a + $\frac{c}{a}x$;

c) MF2 = a – $\frac{c}{a}x$.

Trả lời: Để giải câu hỏi trên, chúng ta sẽ đi theo các bước sau:a) Ta có đẳng thức: $MF1^{2} - MF2^{2} = 4cx$... Xem hướng dẫn giải chi tiết

Luyện tập 3. Cho elip (E): $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ với tiêu điểm $F2(\sqrt{5};0)$. Tìm toạ độ điểm M ∈ (E) sao cho độ dài F2M nhỏ nhất.

Trả lời: Để tìm toạ độ điểm M trên elip sao cho độ dài F2M nhỏ nhất, ta cần tìm điểm M sao cho F2M là bán... Xem hướng dẫn giải chi tiết

Luyện tập 3. Cho elip (E): $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ với tiêu điểm $F2(\sqrt{5};0)$. Tìm toạ độ điểm M ∈ (E) sao cho độ dài F2M nhỏ nhất.

Trả lời: Để tìm toạ độ điểm M thuộc (E) sao cho độ dài F2M là nhỏ nhất, ta cần tìm điểm trên elip sao cho... Xem hướng dẫn giải chi tiết

V. Đường chuẩn của Elip

Hoạt động 7. Cho elip (E) có phương trình chính tắc là $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (a > b > 0). Xét đường thẳng Δ1: x =  $-\frac{a}{e}$

Giải hoạt động 7 trang 45 Chuyên đề toán lớp 10 cánh diều

Với mỗi điểm M(x; y) ∈ (E) (Hình 9), tính:

a) Khoảng cách d(M, Δ1) từ điểm M(x; y) đến đường thẳng Δ1.

b) Tỉ số $\frac{MF1}{d(M,\Delta 1)}$

Trả lời: a) Phương pháp giải:- Đường thẳng Δ1 có phương trình x = -a/e- Khoảng cách từ điểm M(x; y) đến đường... Xem hướng dẫn giải chi tiết

Luyện tập 4. Viết phương trình chính tắc của elip, biết tiêu điểm F2(5; 0) và đường chuẩn ứng với tiêu điểm đó là x =$\frac{36}{5}$

Trả lời: Phương pháp giải:1. Đầu tiên, ta xác định được tiêu điểm F2(5; 0) nên c = 5.2. Đường chuẩn ứng với... Xem hướng dẫn giải chi tiết

VI. Liên hệ giữa đường tròn và đường elip

Hoạt động 8. Cho elip (E) có phương trình chính tắc là $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (a > b > 0). Xét đường tròn (C) tâm O bán kính a có phương trình là $x^{2} + y^{2} = a^{2}$.

Xét điểm M(x; y) ∈ (E) và điểm M1(x; y1) ∈ (C) sao cho y và y1 luôn cùng dấu (khi M khác với hai đỉnh A1, A2 của (E)) (Hình 10).

Giải hoạt động 8 trang 46 Chuyên đề toán lớp 10 cánh diều

a) Từ phương trình chính tắc của elip (E), hãy tính $y^{2}$ theo $x^{2}$.

Từ phương trình của đường tròn (C), hãy tính $y1^{2}$ theo $x^{2}$.

b) Tính tỉ số $\frac{HM}{HM1}=\frac{y}{y1}$ theo a và b.

Trả lời: Để giải câu hỏi trên, ta cần thực hiện các bước sau đây:a) Để tính $y^2$ theo $x^2$ từ phương trình... Xem hướng dẫn giải chi tiết

VII. Cách vẽ đường Elip

Hoạt động 9. Vẽ elip (E): $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Trả lời: Phương pháp giải là:Bước 1: Xác định a = 5, b = 3 và các đỉnh của elip là A1(– 5; 0), A2(5; 0), B1(... Xem hướng dẫn giải chi tiết

Bài tập

Bài tập 1. Viết phương trình chính tắc của elip (E) trong mỗi trường hợp sau:

a) Độ dài trục lớn bằng 6 và tiêu điểm là F1(–2; 0);

b) Tiêu cự bằng 12 và tâm sai bằng $\frac{3}{5}$;

c) Tâm sai bằng $\frac{\sqrt{5}}{3}$ và chu vi hình chữ nhật cơ sở của (E) bằng 20.

Trả lời: Phương pháp giải:a) Đối với trường hợp a), ta đã biết rằng độ dài trục lớn bằng 6 và tiêu điểm là... Xem hướng dẫn giải chi tiết

Bài tập 2. Tìm tâm sai của elip (E) trong mỗi trường hợp sau:

a) Độ dài bán trục lớn gấp hai lần độ dài bán trục bé;

b) Khoảng cách từ một đỉnh trên trục lớn đến một đỉnh trên trục bé bằng tiêu cự.

Trả lời: a) Phương pháp giải:- Gọi độ dài bán trục lớn và bán trục bé lần lượt là a và b.- Theo đề bài, a =... Xem hướng dẫn giải chi tiết

Bài tập 3. Trái Đất chuyển động quanh Mặt Trời theo một quỹ đạo là đường elip mà Mặt Trời là một tiêu điểm. Biết elip này có bán trục lớn a ≈ 149598261 km và tâm sai e ≈ 0,017. Tìm khoảng cách nhỏ nhất và lớn nhất giữa Trái Đất và Mặt Trời (kết quả được làm tròn đến hàng đơn vị).

Trả lời: Để giải bài toán này, chúng ta cần biết rằng elip có bán trục lớn a và tâm sai e, trong đó bán trục... Xem hướng dẫn giải chi tiết

Bài tập 4. Cho elip (E): $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ Tìm toạ độ điểm M ∈ (E) sao cho độ dài F2M lớn nhất, biết F2 là một tiêu điểm có hoành độ dương của (E).

Trả lời: Để giải bài toán này, ta cần áp dụng một số kiến thức về elip. Elip có phương trình chuẩn... Xem hướng dẫn giải chi tiết

Bài tập 5. Hình 11 minh hoạ mặt cắt đứng của một căn phòng trong bảo tàng với mái vòm trần nhà của căn phòng đó có dạng một nửa đường elip. Chiều rộng của căn phòng là 16 m, chiều cao của tượng là 4 m, chiều cao của mái vòm là 3 m.

 Giải bài tập 5 trang 48 Chuyên đề toán lớp 10 cánh diều

a) Viết phương trình chính tắc của elip biểu diễn mái vòm trần nhà trong hệ trục tọa độ Oxy (đơn vị trên hai trục là mét).

b) Một nguồn sáng được đặt tại tiêu điểm thứ nhất của elip. Cần đặt bức tượng ở vị tri có toạ độ nào để bức tượng sáng rõ nhất? Giả thiết rằng vòm trần phản xạ ánh sáng. Biết rằng, một tia sáng xuất phát từ một tiêu điểm của elip, sau khi phản xạ tại elip thi sẽ đi qua tiêu điểm còn lại.

Trả lời: a) Phương trình chính tắc của elip biểu diễn mái vòm trần nhà trong hệ trục tọa độ Oxy là:... Xem hướng dẫn giải chi tiết
0.52330 sec| 2229.797 kb