Giải bài tập chuyên đề toán lớp 10 cánh diều bài 2 Hypebol

Hướng dẫn giải bài 2 chuyên đề Hypebol trang 49 sách toán lớp 10 cánh diều

Sách chuyên đề toán lớp 10 cánh diều đã được biên soạn nhằm hỗ trợ việc phát triển năng lực vận dụng trí thức cho học sinh. Bài giảng cung cấp hướng dẫn cụ thể và chi tiết để giúp học sinh nắm vững bài học. Hy vọng rằng thông qua các phương pháp giảng dạy này, học sinh sẽ có cơ hội hiểu rõ và áp dụng kiến thức một cách tốt nhất.

Bài tập và hướng dẫn giải

I. Tính đối xứng của Hypebol

Hoạt động 1. Trong mặt phẳng toạ độ Oxy, ta xét hypebol (H) có phương trình chính tắc là $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, trong đó a > 0, b > 0 (Hình 13).

Giải hoạt động 1 trang 49 Chuyên đề toán lớp 10 cánh diều

a) Tìm toạ độ hai tiêu điểm F1, F2 của hypebol (H).

b) Hypebol (H) cắt trục Ox tại các điểm A1, A2. Tìm độ dài các đoạn thẳng OA1 và OA2.

Trả lời: Phương pháp giải:a) Để tìm toạ độ hai tiêu điểm $F_{1}, F_{2}$ của hypebol (H), ta có phương trình:... Xem hướng dẫn giải chi tiết

Hoạt động 2. Trong mặt phẳng toạ độ Oxy, ta xét hypebol (H) có phương trình chính tắc là $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ trong đó a > 0, b > 0 (Hình 14).

Giải hoạt động 2 trang 49 Chuyên đề toán lớp 10 cánh diều

Cho điểm M(x; y) nằm trên hypebol (H). Gọi M1, M2, M3 lần lượt là điểm đối xứng của M qua trục Ox, trục Oy và gốc O. Các điểm M1, M2, M3 có nằm trên hypebol (H) hay không? Tại sao?

Trả lời: Để giải bài toán này, ta sẽ xác định các điểm M1, M2, M3 có nằm trên hyperbol (H) hay không bằng... Xem hướng dẫn giải chi tiết

II. Hình chữ nhật cơ sở

Hoạt động 3.

a) Quan sát điểm M (x; y) nằm trên hypebol (H) (Hình 15) và chứng tỏ rằng x ≤ –a hoặc x ≥ a.

b) Viết phương trình hai đường thẳng PR và QS.

Giải hoạt động 3 trang 50 Chuyên đề toán lớp 10 cánh diều

Trả lời: a) Phương pháp giải:- Ta biết rằng nếu điểm M(x; y) thuộc hypebol (H) thì... Xem hướng dẫn giải chi tiết

Luyện tập 1. Viết phương trình chính tắc của hypebol có một đỉnh là A2(5; 0) và một đường tiệm cận là y = –3x.

Trả lời: Để giải bài toán này, ta có thể sử dụng phương pháp giao điểm giữa hypebol và đường tiệm cận:1. Sử... Xem hướng dẫn giải chi tiết

III. Tâm sai của Hypebol

Hoạt động 4. Nêu định nghĩa tâm sai của elip có phương trình chính tắc là $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ với a > b > 0.

Trả lời: Để tìm tâm sai của elip, ta sử dụng định nghĩa của tâm sai. Tâm sai của elip chính là khoảng cách từ... Xem hướng dẫn giải chi tiết

Luyện tập 2. Viết phương trình chính tắc của hypebol, biết độ dài trục ảo bằng 6 và tâm sai bằng $\frac{5}{4}$

Trả lời: Để giải bài toán này, ta sử dụng các thông tin đã cho và công thức tính tâm sai của hypebol:1. Gọi... Xem hướng dẫn giải chi tiết

IV. Bán kính qua tiêu cửa một điểm thuộc Hypebol

Hoạt động 5. Trong mặt phẳng, xét đường hypebol (H) là tập hợp các điểm M sao cho |MF1 – MF2| = 2a, ở đó F1F2 = 2c với c > a > 0. Ta chọn hệ trục toạ độ Oxy có gốc là trung điểm của đoạn thẳng F1F2. Trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 16). Khi đó F1(c; 0), F2(c; 0) là các tiêu điểm của (H).

Giải hoạt động 5 trang 52 Chuyên đề toán lớp 10 cánh diều

Với mỗi điểm M(x; y) thuộc đường hypebol (H), chứng minh:

a) $MF1^{2} = x^{2} + 2cx + c^{2} + y^{2}$;

b) $MF2^{2} = x^{2} – 2cx + c^{2} + y^{2}$;

c) $MF1^{2} – MF2^{2} = 4cx.$

Trả lời: Để chứng minh các phần của câu hỏi, chúng ta cần sử dụng Định lý Pythagoras và tính khoảng cách giữa... Xem hướng dẫn giải chi tiết

Hoạt động 6. Với mỗi điểm M thuộc hypebol (H), từ hai đẳng thức $MF1^{2} – MF2^{2} = 4cx$ và |MF1 – MF2| = 2a, chứng minh:

$MF1=|a+\frac{c}{a}x|=|a+ex|; MF2=|a-\frac{c}{a}x|=|a-ex|$

Trả lời: Để giải câu hỏi trên, ta có thể thực hiện các bước sau:Bước 1: Giả sử điểm M có tọa độ (x, y) và hai... Xem hướng dẫn giải chi tiết

Luyện tập 3. Cho hypebol có phương trình chính tắc $\frac{x^{2}}{144}-\frac{y^{2}}{25}=1$ Giả sử M là điểm thuộc hypebol có hoành độ là 15. Tìm độ dài các bán kính qua tiêu của điểm M.

Trả lời: Để giải bài toán này, ta cần xác định hệ số a và b của phương trình hyperbol. Từ phương trình chính... Xem hướng dẫn giải chi tiết

V. Đường chuẩn của Hypebol

Hoạt động 7. Cho hypebol (H) có phương trình chính tắc $\frac{x^{2}}{a^{2}}-\frac{b^{2}}{y^{2}}=1$ với a > 0, b > 0. Xét đường thẳng $\Delta 1: x=-\frac{a}{e}$

Giải hoạt động 7 trang 53 Chuyên đề toán lớp 10 cánh diều

Với mỗi điểm M (x0; y0) ∈ (H) (Hình 17), tính:

a) Khoảng cách d (M, Δ1) từ điểm M(x0; y0) đến đường thẳng Δ1.

b) Tỉ số $\frac{MF1}{d(M,\Delta 1}$

Trả lời: a) Phương pháp giải:Để tính khoảng cách từ điểm M đến đường thẳng Δ1, ta sử dụng công thức tính... Xem hướng dẫn giải chi tiết

Luyện tập 4. Tìm các tiêu điểm và đường chuẩn của hypebol có phương trình chính tắc là $\frac{x^{2}}{11}-\frac{y^{2}}{25}=1$

Trả lời: Phương pháp giải:Để tìm các tiêu điểm của hyperbol, ta cần tìm ra hai điểm F1 và F2 nằm trên trục... Xem hướng dẫn giải chi tiết

VI. Cách vẽ đường Hypebol

Hoạt động 8. Vẽ hypebol (H): $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

Trả lời: Để vẽ hyperbol (H) có phương trình $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$, ta thực hiện các bước... Xem hướng dẫn giải chi tiết

Luyện tập 5. Cho hypebol (H) có một đỉnh là A1(–4; 0) và tiêu cự là 10. Viết phương trình chính tắc và vẽ hypebol (H).

Trả lời: Phương pháp giải:1. Xác định đỉnh và tiêu cự của hyperbol.2. Sử dụng các thông tin đã cho (đỉnh và... Xem hướng dẫn giải chi tiết

Bài tập

Bài tập 1. Viết phương trình chính tắc của hypebol, biết:

a) Tiêu điểm là F1(– 3; 0) và đỉnh là A2 (2; 0).

b) Đỉnh là A2(4; 0) và tiêu cự bằng 10.

c) Tiêu điểm F2 (4; 0) và phương trình một đường tiệm cận là $y=-\frac{\sqrt{7}}{3}x$

Trả lời: a) Phương trình chính tắc của hyperbol là $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{5}=1$b) Phương trình chính... Xem hướng dẫn giải chi tiết

Bài tập 2. Trong mặt phẳng toạ độ Oxy, cho hypebol có phương trình chính tắc $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$

a) Xác định toạ độ các đỉnh, tiêu điểm, tiêu cự, độ dài trục thực của hypebol.

b) Xác định phương trình các đường tiệm cận của hypebol và vẽ hypebol trên.

Trả lời: a) Phương pháp giải:Để xác định các điểm cần tìm trên hypebol, ta thực hiện các bước sau:1. Xác định... Xem hướng dẫn giải chi tiết

Bài tập 3. Trong mặt phẳng toạ độ Oxy, cho hypebol có phương trình chính tắc là $x^{2} – y^{2} = 1$. Chứng minh rằng hai đường tiệm cận của hypebol vuông góc với nhau.

Trả lời: Để chứng minh rằng hai đường tiệm cận của hyperbol $x^2 - y^2 = 1$ vuông góc với nhau, ta cần tìm... Xem hướng dẫn giải chi tiết

Bài tập 4. Trong mặt phẳng tọa độ Oxy, cho hypebol $(H): \frac{x^{2}}{64}-\frac{y^{2}}{36}=1$. Lập phương trình chính tắc của elip (E), biết rằng (E) có các tiêu điểm là các tiêu điểm của (H) và các đỉnh của hình chữ nhật cơ sở của (H) đều nằm trên (E).

Trả lời: Để giải bài toán này, chúng ta có thể thực hiện các bước sau:Bước 1: Xác định định dạng chính tắc... Xem hướng dẫn giải chi tiết

Bài tập 5. Dọc theo bờ biển, người ta thiết lập hệ thống định vị vô tuyến dẫn đường tầm xa để truyền tín hiệu cho máy bay hoặc tàu thuỷ hoạt động trên biển. Trong hệ thống đó có hai đài vô tuyến đặt lần lượt tại địa điểm A và địa điểm B, khoảng cách AB = 650 km (Hình 18). Giả sử có một con tàu chuyển động trên biển với quỹ đạo là hypebol nhận A và B là hai tiêu điểm.

Giải bài tập 5 trang 56 Chuyên đề toán lớp 10 cánh diều

Khi đang ở vị trí P, máy thu tín hiệu trên con tàu chuyển đổi chênh lệch thời gian nhận các tín hiệu từ A và B thành hiệu khoảng cách |PA – PB|. Giả sử thời gian con tàu nhận được tín hiệu từ B trước khi nhận được tín hiệu từ A là 0,0012 s. Vận tốc di chuyển của tín hiệu là $3 \times  108$ m/s.

a) Lập phương trình hypebol mô tả quỹ đạo chuyển động của con tàu.

b) Chứng tỏ rằng tại mọi thời điểm trên quỹ đạo chuyển động thì thời gian con tàu nhận được tín hiệu từ B trước khi nhận được tín hiệu từ A luôn là 0,0012 s.

Trả lời: a) Để giải bài toán này, ta cần xác định phương trình của hypebol mô tả quỹ đạo chuyển động của con... Xem hướng dẫn giải chi tiết
FREE học Tiếng Anh
0.48101 sec| 2248.516 kb