Giải bài tập sách bài tập (SBT) toán lớp 10 Cánh diều bài 5 Hai dạng phương trình quy về phương trình bậc hai

Hướng dẫn giải bài 5 Hai dạng phương trình quy về phương trình bậc hai

Trong bài 5 của vở bài tập toán lớp 10 sách Giải bài tập, chúng ta sẽ tìm hiểu về hai dạng phương trình quy liên quan đến phương trình bậc hai. Bài này được tương tác trên trang 57 của vở bài tập "Cánh diều" theo chương trình đổi mới của Bộ giáo dục. Để giải bài này, chúng ta cần tập trung vào cách áp dụng kiến thức về phương trình bậc hai một cách chính xác.

Việc hướng dẫn giải bài toán chi tiết và cụ thể sẽ giúp học sinh hiểu rõ hơn về bài học. Bằng cách giải thích rõ ràng, dễ hiểu, chúng ta sẽ giúp học sinh nắm vững kiến thức và áp dụng thành thạo trong thực hành.

Bài tập và hướng dẫn giải

Bài 36 : Trong các phát biểu sau, phát biểu nào đúng?

A. Tập nghiệm của phương trình f(x)=g(x)">f(x)=g(xlà tập nghiệm của phương trình f(x) = g(x).

B. Tập nghiệm của phương trình f(x)=g(x)">f(x)=g(xlà tập nghiệm của phương trình [f(x)]2 = [g(x)]2.

C. Mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình f(x)=g(x)">f(x)=g(x).

D. Tập nghiệm của phương trình f(x)=g(x)">f(x)=g(x) là tập nghiệm của phương trình f(x) = g(x) thỏa mãn bất phương trình f(x) ≥ 0 (hoặc g(x) ≥ 0).

Trả lời: Để giải câu hỏi trên, ta có thể thực hiện theo các bước sau:Phương pháp 1:1. Giả sử tập nghiệm của... Xem hướng dẫn giải chi tiết

Bài 37 : Trong các phát biểu sau, phát biểu nào đúng?

A. Tập nghiệm của phương trình √f(x)=g(x) là tập nghiệm của phương trình f(x) = [g(x)]2.

B. Tập nghiệm của phương trình √f(x)=g(x) là tập nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0.

C. Mọi nghiệm của phương trình f(x) = [g(x)]x2 đều là nghiệm của phương trình √f(x)=g(x).

D. Tập nghiệm của phương trình √f(x)=g(x) là tập nghiệm của phương trình f(x) = [g(x)]x2 thỏa mãn bất phương trình f(x) ≥ 0

Trả lời: Để giải câu hỏi này, ta cần điều tra các phát biểu để xem phát biểu nào là đúng.Phương pháp giải:Giả... Xem hướng dẫn giải chi tiết

Bài 38 : Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình f(x)=g(x)">√f(x)=g(x)">f(x)=g(x)">ff(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">) f(x)=g(x)">= f(x)=g(x)">gf(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">).

Trả lời: Để giải câu hỏi trên, ta có thể phân tích như sau:Phương trình cần giải là √f(x) = √g(x). Để có thể... Xem hướng dẫn giải chi tiết

Bài 39 : Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình f(x)=g(x)">f(x)=g(x)">f(x)=g(x)">f(x)=g(x)">√f(x)=g(x)">f(x)=g(x)">ff(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">) f(x)=g(x)">= f(x)=g(x)">gf(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">)f(x)=g(x)">.

Trả lời: Để giải câu hỏi trên, ta có thể sử dụng phương pháp bằng cách chứng minh tương đương giữa phương... Xem hướng dẫn giải chi tiết

Bài 40 : Giải các phương trình sau:

Trả lời: Để giải các phương trình trong bài toán, chúng ta cần thực hiện các bước sau:Bước 1: Đưa các phương... Xem hướng dẫn giải chi tiết

Bài 41 : Giải các phương trình sau:

Trả lời: Để giải phương trình, chúng ta cần phân tích từng trường hợp của phương trình để tìm ra giá trị của... Xem hướng dẫn giải chi tiết

Bài 42 : Để leo lên một bức tường, bác Dũng dùng một chiếc thang cao hơn bức tường đó 2m. Ban đầu bác Dũng đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng vào mép trên của bức tường (Hình 21a). Sau đó, bác Dũng dịch chuyển chân thang vào gần bức tường thêm 1m thì bác Dũng nhận thấy thang tạo với mặt đất một góc 45° (Hình 21b). Bức tường cao bao nhiêu mét?

Trả lời: Để giải bài toán trên, ta gọi chiều cao của bức tường là x (m). Khi đặt chiếc thang sao cho đầu trên... Xem hướng dẫn giải chi tiết

Bài 43 : Một người đi bộ xuất phát từ B trên một bờ sông (coi là đường thẳng) với vận tốc 6km/h để gặp một người chèo thuyền xuất phát cùng lúc từ vị trí A với vận tốc 3km/h. Nếu người chèo thuyền di chuyển theo đường vuông góc với bờ thì phải đi một khoảng cách AH = 300m và gặp người đi bộ tại địa điểm cách B một khoảng BH = 1 400m. Tuy nhiên, nếu di chuyển theo cách đó thì hai người không tới cùng lúc. Để hai người đến cùng lúc thì mỗi người cùng di chuyển về vị trí C (Hình 22).

a) Tính khoảng cách CB.

b) Tính thời gian từ khi hai người xuất phát cho đến khi gặp nhau cùng lúc.

 

Trả lời: Để giải bài toán trên, ta thực hiện các bước sau:a) Gọi C là vị trí gặp nhau của hai người, ta cần... Xem hướng dẫn giải chi tiết

Bài 44 : Người ta muốn thiết kế một vườn hoa hình chữ nhật nội tiếp trong một miếng đất hình tròn có đường kính bằng 50 m (Hình 23). Xác định kích thước vườn hoa hình chữ nhật để tổng quãng đường đi xung quanh vườn hoa đó là 140 m.

 Hai dạng phương trình quy về phương trình bậc hai - Cánh diều (ảnh 1)

Trả lời: Để giải bài toán trên, ta sử dụng các bước sau:1. Gọi chiều dài và chiều rộng của vườn hoa hình chữ... Xem hướng dẫn giải chi tiết
FREE học Tiếng Anh
0.41442 sec| 2234.063 kb