Giải bài tập toán lớp 11 chân trời sáng tạo bài 1 Đạo hàm

Giải bài 1: Đạo hàm sách toán lớp 11 tập 2 chân trời sáng tạo. Phần đáp án chuẩn, hướng dẫn giải chi tiết cho từng bài tập có trong chương trình học của sách giáo khoa. Hi vọng, các em học sinh hiểu và nắm vững kiến thức bài

Bài tập và hướng dẫn giải

Câu hỏi mở đầu

Giữa tốc độ của xe và quãng đường mà xe đi được có mối liên hệ như thế nào? Nếu biết quãng đường s(t) tại mọi thời điểm t thì có thể tính được tốc độ của xe tại mỗi thời điểm không?

Trả lời: Phương pháp giải:Để giải câu hỏi này, chúng ta sẽ sử dụng định nghĩa về tốc độ trung bình và tốc độ... Xem hướng dẫn giải chi tiết

1. Đạo hàm

Khám phá 1 trang 37 toán lớp 11 tập 2 Chân trời: Quãng đường rơi tự do của một vật được biểu diễn bởi công thức $s(t) = 4,9t^{2}$ với t là thời gian tính bằng giây và s tính bằng mét

Vận tốc trung bình của chuyển động này trên khoảng thời gian [5; t] hoặc [t; 5] được tính bằng công thức $\frac{s(t)-s(5)}{t-5}$

a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về $\frac{s(t)-s(5)}{t-5}$ khi t càng gần 5

Khoảng thời gian

[5;6]

[5;5,1]

[5;5,05]

[5;5,01]

[5;5,001]

[4,999;5]

[4,99;5]

$\frac{s(t)-s(5)}{t-5}$

 53,9

b) Giới hạn $\lim_{t \to 5}\frac{s(t)-s(5)}{t-5}$ được gọi là vận tốc tức thời của chuyển động tại thời điểm $t_{0}=5$. Tính giá trị này

c) Tính giới hạn $\lim_{t \to t_{0}}\frac{s(t)-s(t_{0})}{t-t{0}}$ để xác định vận tốc tức thời của chuyển động tại thời điểm $t_{0}$ nào đó trong quá trình rơi của vật

Trả lời: a) - Vận tốc trung bình trong khoảng thời gian [5;6]: $\frac{s(6) - s(5)}{6-5} = \frac{4.9(6^2) -... Xem hướng dẫn giải chi tiết

Thực hành 1 trang 39 toán lớp 11 tập 2 Chân trời: Tính đạo hàm của hàm số $f(x) = x^{3}$

Trả lời: Để tính đạo hàm của hàm số $f(x) = x^3$, ta sử dụng định nghĩa của đạo hàm như sau: a) Với bất kỳ... Xem hướng dẫn giải chi tiết

Vận dụng trang 39 toán lớp 11 tập 2 Chân trời: Với tình huống trong Khám phá 1, hãy tính vận tốc tức thời của chuyển động lúc t = 2

Trả lời: Phương pháp giải:Để tính vận tốc tức thời của chuyển động lúc t = 2, chúng ta sẽ sử dụng định nghĩa... Xem hướng dẫn giải chi tiết

2. Ý nghĩa hình học của đạo hàm

Khám phá 2 trang 39 toán lớp 11 tập 2 Chân trời: Cho hàm số $y = f(x) = \frac{1}{2}x^{2}$ có đồ thị (C) và điểm $M(1;\frac{1}{2})$ thuộc (C)

a) Vẽ (C) và tính f'(1)

b) Vẽ đường thẳng d đi qua điểm M và có hệ số góc bằng f'(1). Nêu nhận xét về vị trí tương đối giữa d và (C)

Trả lời: Phương pháp giải:a) Để tính \(f'(1)\), ta sử dụng định nghĩa của đạo hàm:\[f'(1) = \lim_{x \to 1}... Xem hướng dẫn giải chi tiết

Thực hành 2 trang 40 toán lớp 11 tập 2 Chân trời: Cho (C) là đồ thị của hàm số $f(x) =\frac{1}{x}$ và điểm $M(1;1) \in (C)$. Tính hệ số góc của tiếp tuyến của (C) tại điểm M và viết phương trình tiếp tuyến đó

Trả lời: Để tính hệ số góc của tiếp tuyến của (C) tại điểm M và viết phương trình tiếp tuyến đó, ta có thể... Xem hướng dẫn giải chi tiết

3. Số e

Khám phá 3 trang 40 toán lớp 11 tập 2 Chân trời: Một người gửi tiết kiệm khoản tiền A triệu đồng (gọi là vốn) với lãi suất r/năm theo thể thức lãi kép (tiền lãi sau mỗi kì hạn dược cộng gộp vào vốn). Tính tổng số tiền vốn và lãi sau một năm của người gửi nếu kì hạn là:

a) một năm

b) một tháng

Lưu ý: Nếu một năm được chia thành n kì hạn $(n \in N^{*})$ thì lãi suất mỗi kì hạn là $\frac{r}{n}$

Trả lời: Phương pháp giải:a) Nếu kì hạn là 1 năm:Sau 1 năm, số tiền vốn và lãi sẽ là: A(1 + r)b) Nếu kì hạn... Xem hướng dẫn giải chi tiết

Thực hành 3 trang 41 toán lớp 11 tập 2 Chân trời: Một người gửi tiết kiệm khoản tiền 5 triệu đồng vào ngân hàng với lãi suất 6%/năm và theo thể thức lãi kép liên tục. Tính tổng số tiền vốn và lãi mà người đó nhận được sau:

a) 1 ngày

b) 30 ngày

Trả lời: Phương pháp giải:Để tính tổng số tiền vốn và lãi sau mỗi khoản thời gian, ta áp dụng công thức tính... Xem hướng dẫn giải chi tiết

Bài tập

Bài tập 1 trang 41 toán lớp 11 tập 2 Chân trời: Dùng định nghĩ để tính đạo hàm của các hàm số sau:

a) $f(x) = -x^{2}$

b) $f(x)=x^{3}-2x$

c) $f(x) =\frac{4}{x}$

Trả lời: Phương pháp giải:Để tính đạo hàm của các hàm số cho trước theo định nghĩa, ta sử dụng công thức tính... Xem hướng dẫn giải chi tiết

Bài tập 2 trang 41 toán lớp 11 tập 2 Chân trời: Cho hàm số $f(x) = -2x^{2}$ có đồ thị (C) và điểm $A(1;-2) \in (C)$. Tính hệ số góc của tiếp tuyến với (C) tại điểm A.

Trả lời: Để tính hệ số góc của tiếp tuyến với đồ thị của hàm số $f(x) = -2x^{2}$ tại điểm $A(1;-2)$, ta cần... Xem hướng dẫn giải chi tiết

Bài tập 3 trang 42 toán lớp 11 tập 2 Chân trời: Viết phương trình tiếp tuyến của đồ thị hàm số $y=x^{3}$

a) Tại điểm (-1;1)

b) Tại điểm có hoành độ bằng 2

Trả lời: Để giải bài toán trên, ta cần áp dụng kiến thức về đạo hàm và phương trình tiếp tuyến.a) Tại điểm... Xem hướng dẫn giải chi tiết

Bài tập 4 trang 42 toán lớp 11 tập 2 Chân trời: Một chuyển động thẳng xác định bởi phương trình $s(t) = 4t^{3} +6t+2$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại t = 2

Trả lời: Để tính vận tốc tức thời của chuyển động tại \( t = 2 \), ta thực hiện các bước sau:1. Đạo hàm của... Xem hướng dẫn giải chi tiết

Bài tập 5 trang 42 toán lớp 11 tập 2 Chân trời: Một người gửi tiết kiệm khoản tiền 10 triệu đồng vào một ngân hàng với lãi suất 5%/năm. Tính tổng số tiền vốn và lãi mà người đó nhận được sau một năm, nếu tiền lãi được tính theo thể thức

a) lãi kép với kì hạn 6 tháng

b) lãi kép liên tục

Trả lời: a) Phương pháp giải:Để tính tổng số tiền vốn và lãi người đó nhận được sau một năm khi lãi được tính... Xem hướng dẫn giải chi tiết

Bài tập 6 trang 42 toán lớp 11 tập 2 Chân trời: Trên Mặt trăng, quãng đường rơi tự do của một vật được cho bởi công thức $h(t) = 0,81t^{2}$, với t được tính bằng giây và h tính bằng mét. Hãy tính vận tốc tức thời của vật được thả rơi tự do trên Mặt trăng tại thời điểm t = 2

Trả lời: Để tính vận tốc tức thời của vật được thả rơi tự do trên Mặt trăng tại thời điểm t = 2, ta sử dụng... Xem hướng dẫn giải chi tiết
0.47698 sec| 2244.289 kb