Lớp 12
Lớp 1điểm
11 tháng trước
Đỗ Bảo Giang

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P): 3x-2y-z+5=0  và đường thẳng  ∆ :   x - 1 2   =   y - 7 1   =   z - 3 4   . Gọi (Q)  là mặt phẳng chứa đường thẳng ∆  và song song với (P) . Tính khoảng cách giữa hai mặt phẳng (P)  và (Q) . A.  9 14 B.  9 14 C.  3 14 D.  3 14
Mọi người thân mến, mình rất cần một chút trợ giúp từ Mọi người. Mọi người có thể dành ít phút để giúp mình không?

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Chọn M0(1, 7, 3/4) (điểm trên đường thẳng ∆). Dùng công thức khoảng cách từ 1 điểm đến mặt phẳng, ta có d = |3*1 - 2*7 - 1*(3/4) + 5|/sqrt(3^2 + (-2)^2 + (-1)^2) = |3 - 14 - 3/4 + 5|/sqrt(14.25) = 3/14.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 1Trả lời.

Tiếp theo, ta chọn một điểm M0 trên mặt phẳng (Q) và tính d khoảng cách từ M0 đến mặt phẳng (P).

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 2Trả lời.

Với đường thẳng ∆: x - 1/2 = y - 7/1 = z - 3/4, ta có vec{d} = (1, 7, 3/4). Vậy, phương trình mặt phẳng (Q) là 3x - 2y - z + d = 0, với d là số thực.

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 2Trả lời.

Từ phương trình (P): 3x - 2y - z + 5 = 0, ta có vec{n} = (3, -2, -1).

Hãy giúp mọi người biết câu trả lời này thế nào?
31 vote
Cảm ơn 1Trả lời.
Câu hỏi Toán học Lớp 12
Câu hỏi Lớp 12

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.52767 sec| 2296.961 kb