Lớp 9
Lớp 1điểm
10 tháng trước
Phạm Đăng Huy

Giải bất phương trình sau: x2 - 8x - 9  ≥ 0
Mọi người ạ, mình rất cần sự giúp đỡ của các Bạn để giải quyết câu hỏi này. Cám ơn các Bạn nhiều lắm!

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Phương pháp giải bất phương trình x2 - 8x - 9 ≥ 0 là:
Bước 1: Giải phương trình x2 - 8x - 9 = 0 để tìm các điểm cực trị của đồ thị. Phương trình trên có dạng x2 - 8x - 9 = (x - 9)(x + 1) = 0. Từ đó suy ra x = 9 hoặc x = -1.
Bước 2: Vẽ đồ thị y = x2 - 8x - 9. Đồ thị có 2 điểm cực trị là (-1, -18) và (9, 0).
Bước 3: Xác định đồ thị của bất phương trình x2 - 8x - 9 ≥ 0 nằm trên trục hoành như thế nào từ đồ thị đã vẽ. Khi x nằm trong khoảng [-1, 9], đồ thị nằm phía trên hoặc trùng với trục hoành, do đó bất phương trình x2 - 8x - 9 ≥ 0 khi x thuộc khoảng [-1, 9].
Vậy nên, nghiệm của bất phương trình x2 - 8x - 9 ≥ 0 là x ∈ [-1, 9].

Hãy giúp mọi người biết câu trả lời này thế nào?
41 vote
Cảm ơn 6Trả lời.

Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp kỹ thuật số học. Dựa vào định lý điểm uốn, ta xác định được hình dáng của đồ thị của hàm số y = x^2 - 8x - 9. Sử dụng thông tin về điểm uốn và dấu của hàm số tại các điểm chính tắc, ta có thể xác định nghiệm của bất phương trình này.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 0Trả lời.

Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp giải theo dấu của hàm số. Đầu tiên, tìm các điểm chính tắc của hàm số bằng cách giải phương trình x^2 - 8x - 9 = 0. Tiếp theo, sử dụng các khoảng điểm chính tắc và kiểm tra dấu của hàm số tại các khoảng này để xác định các nghiệm của bất phương trình.

Hãy giúp mọi người biết câu trả lời này thế nào?
21 vote
Cảm ơn 0Trả lời.

Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta cần tìm các khoảng giá trị của x thỏa mãn điều kiện này. Đầu tiên, ta thực hiện phân tích biểu thức x^2 - 8x - 9 thành (x - 9)(x + 1) ≥ 0. Tiếp theo, ta vẽ đồ thị hàm số y = (x - 9)(x + 1) và xác định các khoảng giá trị của x mà hàm số này lớn hơn hoặc bằng 0.

Hãy giúp mọi người biết câu trả lời này thế nào?
31 vote
Cảm ơn 2Trả lời.

Để giải bài toán trên, trước hết chúng ta cần xác định diện tích của hình vuông. Ta gọi cạnh hình vuông là a.

Vì hai cạnh OB và OI có hiệu là 7 cm nên ta có thể lập phương trình: \(|OB - OI| = 7\) (vì chúng cùng nằm trên đường chéo của hình vuông nên chúng không thể âm) => \(|a - \frac{a\sqrt{2}}{2}| = 7\) (với \(OI = \frac{a\sqrt{2}}{2}\))

Giải phương trình trên, ta sẽ tìm được cạnh của hình vuông là a = 14 cm.

Diện tích của hình vuông là \(a^2 = 14^2 = 196 cm^2\).

Vì bốn tam giác vuông bằng nhau, nên diện tích của mỗi tam giác vuông là \(\frac{196}{4} = 49 cm^2\).

Do đó, diện tích của hình hoa (tính từ hình vuông ban đầu) sẽ là \(196 - 4 \times 49 = 196 - 196 = 0 cm^2\).

Vậy diện tích của hình hoa là 0 cm2.

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 6Trả lời.
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.58806 sec| 2298.367 kb