Chứng minh rằng
7 mũ 6 + 7 mũ 5 -7 mũ 4 chia hết cho 11
Mình cảm thấy khá là lo lắng và không biết phải làm thế nào với câu hỏi này. Bạn nào thông tuệ giúp mình với, mình sẽ cảm kích mãi mãi!
Các câu trả lời
Câu hỏi Toán học Lớp 6
- giúp mình bài tìm x : 1 phần 1×3+1 phần 3×5+1 phần 5×7 + . . .+1 phần (2x...
- vẽ tia ox trên tia ox lấy hai điểm a và b sao cho oa=4cm ,ob=14cm .trên tia ox lấy điểm c sao cho...
- Bài 3. Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên trong mỗi...
- Câu 13. (1,0 điểm) Giải thích vì sao trong bốn số 51; 123; 145; 1 111 không có số...
- Ba tổ học sinh trồng 180 cây xung quanh vườn trường.Số cây tổ thứ nhất trồng bằng 40% tổng số cây.số...
- trên bàn có 5 tấm thẻ , trên đó ghi các số 6 , 14 , 15 , 25 và 35 ( trên mỗi thẻ ghi mỗi số). Hai bạn Hùng và Yến ,...
- Cho phân số 43/36. Hãy tìm một số tự nhiên m sao cho khi lấy tử số của đã cho trừ đi...
- lấy ví dụ về câu trần thuật ghép và câu trần thuật đơn ...
Câu hỏi Lớp 6
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Đỗ Huỳnh Giang
Phương pháp giải:Ta có công thức tổng quát để tính a mũ n + b mũ n - c mũ n là (a + b - c) * (a mũ n-1 - b mũ n-2 + c mũ n-3 - ...). Áp dụng công thức này vào biểu thức 7 mũ 6 + 7 mũ 5 - 7 mũ 4 ta được: 7 * (7 mũ 5 - 7 mũ 4 + 1) = 7 * 7(7 mũ 4) = 49 * 2401 = 117649. Ta thấy 117649 chia hết cho 11.Do đó, ta chứng minh được rằng 7 mũ 6 + 7 mũ 5 - 7 mũ 4 chia hết cho 11.
Đỗ Bảo Ngọc
Một cách khác để chứng minh cho biểu thức 7^6 + 7^5 - 7^4 chia hết cho 11 là sử dụng định lý chia hết Fermat: a^p ≡ a (mod p) với a không chia hết cho p và p là số nguyên tố. Ở đây, ta thấy rằng 7 không chia hết cho 11, và 11 là số nguyên tố. Áp dụng định lý cho từng thành phần của biểu thức, ta có thể kết luận được tính chất chia hết của biểu thức đó.
Đỗ Đăng Vương
Chứng minh cũng có thể được thực hiện bằng cách sử dụng phép chia dư trong đại số modulơ. Ta chia lần lượt các thành phần 7^6, 7^5, 7^4 cho 11. Khi thực hiện phép tính này, ta thấy rằng phần dư của mỗi số đều bằng 1. Từ đó, ta kết luận được rằng biểu thức 7^6 + 7^5 - 7^4 chia hết cho 11.
Đỗ Văn Hưng
Cách tiếp cận khác, ta có thể sử dụng tính chất của phép chia lấy dư. Nhìn chung, để kiểm tra xem một số chia hết cho 11 hay không, ta có thể tính tổng các chữ số ở vị trí chẵn trừ tổng các chữ số ở vị trí lẻ của số đó. Áp dụng phương pháp này cho biểu thức 7^6 + 7^5 - 7^4 sẽ cho kết quả là số chia hết cho 11.
Đỗ Thị Ngọc
Cách khác, ta có thể biến đổi biểu thức 7^6 + 7^5 - 7^4 thành (7^6 - 1) + 7(7^4 - 1). Áp dụng công thức a^2 - b^2 = (a - b)(a + b) ta được (7^3 - 1)(7^3 + 1) + 7(7^2 - 1)(7^2 + 1). Tiếp theo, chúng ta sẽ chia từng thành phần cho 11 và kết luận rằng biểu thức ban đầu chia hết cho 11.