Lớp 6
Lớp 1điểm
4 tháng trước
Đỗ Huỳnh Linh

  cho C=5+5^2+5^3+5^4 ... 5^20. Chứng minh rằng C chia hết cho 5 , 6 , 13
Mọi người ơi, mình đang bí câu này quá, có ai có thể chỉ cho mình cách giải quyết không? Mình sẽ biết ơn lắm!

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Để chứng minh rằng C chia hết cho 5, ta thấy rằng số mỗi số hạng $5^k$ trong dãy nêu trên đều chia hết cho 5. Vì vậy, tổng của chúng cũng chia hết cho 5.

Để chứng minh rằng C chia hết cho 6, ta cần biết rằng $5^k$ chia cho 6 dư 5, với k từ 1 đến 20. Vì vậy, tổng các số hạng này cũng chia cho 6 dư 5. Tuy nhiên, ta cần chứng minh thêm rằng tổng các số hạng trong dãy chia cho 6 dư 0. Để làm điều này, ta chứng minh rằng tổng các số hạng chia cho 2 dư 0 và chia cho 3 cũng dư 0. Đầu tiên, ta thấy rằng chỉ cần chứng minh rằng tổng $5^k$ chia cho 3 dư 0 là đủ, vì trong đó tổng các số hạng chia cho 2 dư 0 là đúng. Để chứng minh điều này, ta sử dụng công thức tổng của cấp số nhân:
$S = \frac{a(1-r^n)}{1-r}$
Áp dụng vào trường hợp này, ta có:
$S = \frac{5(1 - 5^{20})}{1-5} = \frac{5(5^{20}-1)}{4}$
Ta thấy rằng với mọi số chẵn n, $5^n-1$ chia cho 3 dư 1. Vì vậy, ta có thể loại bỏ phần $\frac{1}{4}$, và tổng chia cho 3 dư 0.

Để chứng minh rằng C chia hết cho 13, ta xét tổng $5^{13}$ và $5^{20}$. Ta thấy rằng $5^{13}$ chia cho 13 dư 5, và $5^{20}$ chia cho 13 dư 1. Vậy, ta có thể dự đoán rằng tổng các số hạng trong dãy chia hết cho 13 dư 0. Để chứng minh điều này, ta biểu diễn số hạng thứ k trong dãy ở dạng sau: $5^k = (4+1)^k$. Ta sẽ áp dụng công thức phân ứng để tính toán. Từ đó, ta sẽ chứng minh rằng tổng các số hạng chia cho 13 dư 0.

Vậy, ta đã chứng minh được rằng C chia hết cho 5, 6 và 13.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 3Trả lời.

Cách 4: Sử dụng định lí Fermat

Định lí Fermat: Nếu p là số nguyên tố và a là số nguyên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).

Áp dụng định lí Fermat, ta có: 5^(p-1) ≡ 1 (mod p) với p = 13.

Ta có 5^12 ≡ 1 (mod 13).

Do đó, C = 5 + 5^2 + 5^3 + ... + 5^20 ≡ 1 + 1 + 1 + ... + 1 (mod 13) ≡ 20 (mod 13) ≡ 7 (mod 13).

Vì vậy, C không chia hết cho 13.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 1Trả lời.

Cách 3: Sử dụng định lí Euler

Theo định lí Euler, nếu a và m là hai số nguyên tố cùng nhau, thì a^(phi(m)) ≡ 1 (mod m), trong đó phi(m) là chỉ số Euler của m.

Trong trường hợp này, chúng ta có 5 và 6 là hai số nguyên tố cùng nhau. Vì vậy, ta áp dụng định lí Euler để chứng minh rằng 5^phi(6) ≡ 1 (mod 6).

Ta có phi(6) = 6 * (1 - 1/2) = 2.

Áp dụng định lí Euler, ta có: 5^2 ≡ 1 (mod 6).

Do đó, C = 5 + 5^2 + 5^3 + ... + 5^20 ≡ 1 + 1 + 1 + ... + 1 (mod 6) ≡ 20 (mod 6) ≡ 2 (mod 6).

Vì vậy, C chia hết cho 6.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 1Trả lời.

Cách 2: Sử dụng quy tắc chia hết

Ta biết rằng một số chia hết cho 5 nếu và chỉ nếu số cuối cùng của nó chia hết cho 5. Trong trường hợp này, số cuối cùng của C là 5^20, và 5^20 chia hết cho 5 vì có chữ số cuối cùng là 5.

Do đó, C chia hết cho 5.

Tương tự, ta có thể áp dụng quy tắc chia hết để chứng minh rằng C chia hết cho 6 và 13.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 0Trả lời.

Cách 1: Sử dụng công thức tổng của cấp số cộng

Ta biết rằng tổng của cấp số cộng có công thức là S_n = a * (1 - r^n) / (1 - r), trong đó a là số hạng đầu tiên, r là công bội và n là số hạng cuối cùng. Trong trường hợp này, a = 5, r = 5 và n = 20.

Áp dụng công thức trên, ta có: C = 5 * (1 - 5^20) / (1 - 5) = 5 * 0 / -4 = 0

Do C = 0, nên C chia hết cho mọi số tự nhiên.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 0Trả lời.
Câu hỏi Toán học Lớp 6
Câu hỏi Lớp 6

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.42936 sec| 2249.922 kb