dùng đồ thị hàm số chứng minh bất đẳng thức
\(\sqrt{x^2-4x+4}>x-3\)
Ai ở đây giỏi về chủ đề này không ạ? Mình đang cần tìm câu trả lời và rất mong được sự giúp đỡ của các Bạn!
Các câu trả lời
Câu hỏi Toán học Lớp 9
- Áp dụng quy tắc khai phương một tích, hãy tính: 45 . 80
- cho a,b,c là các số thực dương thỏa mãn a+b+c=1 Tìm GTNN cua biểu thức 2020(a^2/b + b^2/c...
- Bài 14 (trang 48 SGK Toán 9 Tập 1) Cho hàm số bậc nhất $y=(1-\sqrt{5}) x-1$. a) Hàm số trên là đồng biến hay nghịch...
- Giải hệ phương trình đối xứng loại 2 : 2x2 - 3x= y2-2 ...
- c/m tính chất đồng biến nghịch biến của hàm số y= ax2 trong các trường hợp sau TH1: nếu a>...
- Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A: AH). Kẻ các tiếp tuyến BD, CE...
- Bài 12 (trang 11 SGK Toán 9 Tập 1) Tìm x để mỗi căn thức sau có nghĩa: a) $\sqrt{2x+7}$ ; ...
- CĂN BẬC HAI CỦA 9 LÀ
Câu hỏi Lớp 9
- II. Change the following sentences into passive voice: I told my friend, Jane not to come here again. They...
- viết 1 đoạn văn ngắn theo chủ đề tự chọn trong đó có cử dụng các phương thứ liên kết câu. chỉ ra phương thức liên...
- 1. He was very sorry that he didn’t see Andrey on her trip to London. -- He greatly...
- Theo em, nguồn cảm hứng nào đã chi phối ngòi bút tác giả khi tạo dựng hình ảnh người anh hùng dân tộc Quang Trung -...
- She asked me ................the seat...........or not. a. if -had...
- Read the passage and choose A, B, C or D for each of the following gáp Drought is a condition that becomes...
- Đoạn trích : "Cảnh ngày xuân " nằm ở phần nào của tác phẩm "Truyện Kiều" :
- Lập dàn ý văn 9 nghị luận Trong bài thơ Con cò, nhà thơ Chế Lan Viên có viết: Con dù lớn vẫn là con của mẹ, Đi hết đời...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Đỗ Hồng Đạt
Để giải câu hỏi trên, ta có thể sử dụng đồ thị hàm số và so sánh vị trí của hai đường cong.Phương pháp giải:1. Vẽ đồ thị hàm số y = \(\sqrt{x^2-4x+4}\) và y = x - 3 trên cùng một hệ trục tọa độ.2. Tìm điểm giao nhau của hai đường cong bằng cách giải phương trình \(\sqrt{x^2-4x+4} = x - 3\).3. So sánh vị trí của hai đường cong: - Nếu đồ thị y = \(\sqrt{x^2-4x+4}\) toàn bộ nằm trên đồ thị y = x - 3, tức là không có điểm giao, thì bất đẳng thức \(\sqrt{x^2-4x+4} > x - 3\) đúng với mọi giá trị của x. - Nếu đồ thị y = \(\sqrt{x^2-4x+4}\) cắt đồ thị y = x - 3 tại một điểm (hoặc nhiều điểm) thì bất đẳng thức \(\sqrt{x^2-4x+4} > x - 3\) chỉ đúng với các giá trị x nằm ngoài đoạn cắt của hai đường cong. Câu trả lời: Để xác định đúng giá trị của bất đẳng thức \(\sqrt{x^2-4x+4} > x - 3\), ta cần vẽ đồ thị hàm số y = \(\sqrt{x^2-4x+4}\) và y = x - 3 trên cùng một hệ trục tọa độ và xem vị trí của hai đường cong. Sau đó, ta sẽ biết được bất đẳng thức đúng với những giá trị của x nằm ngoài đoạn cắt của hai đường cong, hoặc đúng với mọi giá trị của x nếu không có điểm giao.
Đỗ Minh Dung
Để giải bài toán này, ta sẽ thực hiện qua 4 cách khác nhau như sau:Cách 1: Giả sử \(x\) là một số thực bất kỳ.- Đầu tiên, ta nhận thấy rằng \(x^2 - 4x + 4 = (x-2)^2\). Do đó, ta có thể rút gọn bất đẳng thức ban đầu thành \(\sqrt{(x-2)^2} > x-3\).- Với mọi số thực \(a\), ta có \(|a|>a\) nếu \(a<0\) và \(|a|=a\) nếu \(a\geq 0\).- Áp dụng phương pháp trên, ta được \(\sqrt{(x-2)^2} > x-3\) tương đương với \(x-2>x-3\) khi \(x-2<0\) và \(x-2=x-3\) khi \(x-2\geq 0\).- Khi xét các trường hợp trên, ta thu được \(1>0\) và \(x-2>x-3\). Điều này luôn đúng với mọi số thực \(x\).- Vậy, bất đẳng thức ban đầu \(\sqrt{x^2-4x+4} > x-3\) đúng với mọi số thực \(x\).Cách 2: Sử dụng đồ thị hàm số.- Để vẽ đồ thị hàm số \(y = \sqrt{x^2-4x+4}\), ta cần xác định miền giá trị hợp lệ của \(x\).- Ta có \(x^2 - 4x + 4 \geq 0\) tương đương với \((x-2)^2 \geq 0\), suy ra \((x-2)^2\) không âm với mọi số thực \(x\).- Do đó, miền giá trị hợp lệ của \(x\) là tập hợp tất cả các số thực.- Vẽ đồ thị hàm số \(y = \sqrt{x^2-4x+4}\) trên đoạn \([-5,5]\), ta thấy rằng đồ thị nằm phía trên đường thẳng \(y = x - 3\) trên đoạn này.- Từ đó, suy ra \(\sqrt{x^2-4x+4} > x-3\) với mọi số thực \(x\).Cách 3: Sử dụng bất đẳng thức tam giác.- Với mọi số thực \(a\), ta có \(\sqrt{a^2} \geq |a|\).- Áp dụng bất đẳng thức trên, ta thu được \( \sqrt{x^2-4x+4} \geq |x-2|\).- Vì \(|x-2|\) đặc biệt lớn hơn hoặc bằng \(x-2\) hoặc \(-(x-2)\), ta có hai trường hợp để xét: + Nếu \(x-2 \geq 0\), ta có \(|x-2|=x-2\) và \(x-3 \geq x-2\). + Nếu \(x-2 < 0\), ta có \(|x-2|=-(x-2)\) và \(x-3 \leq -(x-2)\).- Từ các trường hợp trên, ta có \( \sqrt{x^2-4x+4} \geq |x-2| \geq x-3\) với mọi số thực \(x\).- Vậy, bất đẳng thức ban đầu \(\sqrt{x^2-4x+4} > x-3\) đúng với mọi số thực \(x\).Cách 4: Sử dụng phép đảo ngược bất đẳng thức.- Bắt đầu từ bất đẳng thức ban đầu \(\sqrt{x^2-4x+4} > x-3\), ta sẽ bình phương cả hai vế.- Khi đó, bất đẳng thức được chuyển về dạng \(x^2-4x+4 > (x-3)^2\).- Tiếp theo, ta rút gọn được \(x^2-4x+4 > x^2-6x+9\).- Loại bỏ \(x^2\) ở cả hai vế và viết lại bất đẳng thức, ta thu được \(-4x+4 > -6x+9\).- Tiếp tục rút gọn, ta có \(2x < -5\) và suy ra \(x < -\frac{5}{2}\).- Tuy nhiên, quy tắc khi bình phương hai vế của bất đẳng thức chỉ đúng khi cả hai biểu thức đều không âm.- Vì vậy, ta chỉ có thể chấp nhận kết quả \(x < -\frac{5}{2}\) nếu điều kiện này hợp lệ trong bài toán.- Tuy nhiên, đối với bất đẳng thức ban đầu \(\sqrt{x^2-4x+4} > x-3\), miền xác định của hàm số căn là \(x \geq 2\).- Như vậy, kết quả \(x < -\frac{5}{2}\) không nằm trong miền xác định của hàm số.- Do đó, bất đẳng thức ban đầu không được chứng minh bằng cách sử dụng phép đảo ngược bất đẳng thức.