Cho phương trình x 2 + 2(m+3)x + m 2 + 3 =0
a, Tìm giá trị của m để phương trình có 2 nghiệm phân biệt
b, Tìm giá trị của m để phương trình có 1 nghiệm lớn hơn nghiệm kia là 2.
c, Lập hệ thức liên hệ giữa x 1 , x 2 độc lập với m
Tôi biết rằng đây có thể không phải là thời điểm thích hợp, nhưng tôi thực sự cần sự giúp đỡ từ các Bạn. Ai có thể phân tích vấn đề này cho tôi với?
Các câu trả lời
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?
Đỗ Minh Đức
a: \(\text{Δ}=\left[2\left(m+3\right)\right]^2-4\left(m^2+3\right)\)
\(=\left(2m+6\right)^2-4\left(m^2+3\right)\)
\(=4m^2+24m+36-4m^2-12=24m+24\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>24m+24>0
=>m>-1
b:
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+3\right)\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
Để 1 nghiệm lớn hơn nghiệm còn lại là 2 thì \(x_1-x_2=2\)
Do đó, ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-6\\x_1-x_2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=-2m-4\\x_2=x_1-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_1=-m-2\\x_2=-m-2-2=-m-4\end{matrix}\right.\)
\(x_1\cdot x_2=m^2+3\)
=>\(\left(m+2\right)\left(m+4\right)=m^2+3\)
=>6m+8=3
=>6m=-5
=>m=-5/6(nhận)