How many distinct 3-digit numbers can you make by using 1, 2, 0, 4 and 5?
Answer: numbers.
Mình có một câu hỏi muốn nhờ mọi người giúp đỡ trả lời. Ai có kinh nghiệm, xin đừng ngần ngại chia sẻ với mình!
Các câu trả lời
Câu hỏi Toán học Lớp 5
- An và Bình có một số viên bi.Nếu An cho Bình 3 viên bi thì...
- 1 bể kính nuôi cá dạng hình hộp chữ nhật ko nắp có chiều dài 2m ,chiều rộng 1...
- Tính a. 8,32 + 14,6 + 5,24 b. 24,9 + 57,36 + 5,45 c. 8,9 + 9,3 + 4,7 + 5 các bạn ghi tính kiểu gì ra nha cảm ơn các...
- Bai 1 Ba thùng đưng 347l đầu. Nếu lấy ra 1 số dầu ở thùng A thì thùng 4 còn 40 l ...
Câu hỏi Lớp 5
- Kể câu chuyện một vụ đắm tàu và thêm một cái kết đẹp
- Gạch dưới các chủ ngữ trong các câu sau : a) Trên cành cây , những con chim đang hót líu lo. b) Những con chim trên...
- hãy nêu nội dung chính của bài tập đọc Thuần phục sư tử
- "Yên ổn về chính trị và trật tự xã hội" là nghĩa của từ nào ? a.an toàn b.hòa bình c.an ninh d.hạnh phúc
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Đỗ Hồng Vương
Để giải bài toán trên, ta có thể sắp xếp các chữ số 1, 2, 0, 4 và 5 thành các số 3 chữ số khác nhau. Ta có thể tạo ra các số theo các trường hợp sau:1. Chọn chữ số hàng trăm:- Có 4 cách chọn chữ số hàng trăm (không chọn 0)- Có 3 cách chọn chữ số hàng chục (không chọn chữ số hàng trăm và 0)- Có 2 cách chọn chữ số đơn vị (không chọn chữ số hàng trăm, hàng chục và 0)Số lượng số 3 chữ số khác nhau mà ta có thể tạo ra là: 4 x 3 x 2 = 24 sốVậy có thể tạo ra 24 số 3 chữ số khác nhau bằng cách sử dụng các chữ số 1, 2, 0, 4 và 5.Do đó, số lượng số 3 chữ số khác nhau mà bạn có thể tạo ra là 24.
Phạm Đăng Hưng
Another approach to solving this problem is by considering the combinations of the available digits. We have 5 digits to choose from (1, 2, 0, 4, 5) and we need to choose 3 digits to form a number. Using the combination formula C(n, r) = n! / (r!(n-r)!), the number of distinct 3-digit numbers is C(5, 3) = 5! / (3!(5-3)!) = 5 x 4 x 3 / 3 x 2 = 10 numbers.
Đỗ Thị Long
We can approach this problem by considering the different cases for the first digit. If the first digit is 0, then we have 4 choices each for the tens and units place, resulting in 1 x 4 x 4 = 16 numbers. If the first digit is not 0, then we have 5 choices for the hundreds place, 4 choices for the tens place, and 3 choices for the units place, resulting in 5 x 4 x 3 = 60 numbers. Therefore, the total number of distinct 3-digit numbers is 16 + 60 = 76 numbers.
Đỗ Minh Vương
One way to calculate the number of distinct 3-digit numbers is to use the formula for permutations of n objects taken r at a time. In this case, n=5 (the number of available digits) and r=3 (the number of digits in each number). Therefore, the number of distinct numbers is P(5,3) = 5! / (5-3)! = 5 x 4 x 3 = 60 numbers.
Đỗ Minh Giang
By using the digits 1, 2, 0, 4, and 5, we have 5 choices for the hundreds place. For the tens and units place, we have 4 choices each. Therefore, the total number of distinct 3-digit numbers we can make is 5 x 4 x 4 = 80 numbers.