Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ? 10:59
Mọi người thân mến, mình rất cần một chút trợ giúp từ Mọi người. Mọi người có thể dành ít phút để giúp mình không?
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
Đỗ Thị Đức
Để giải câu hỏi 1, ta có:Ta có a³ + a = 3 và b³ + b = 3.Giả sử a ≠ b.Khi đó, (a-b) ≠ 0.Áp dụng công thức a³ - b³ = (a-b)(a²+ab+b²), ta có:(a³ - b³) = (a-b)(a²+ab+b²).Đặt x = a - b, Khi đó, x ≠ 0. Ta có a³ - b³ = 3 - 3 = 0.(a-b)(a²+ab+b²) = 0.Vì x ≠ 0, nên ta có a² + ab + b² = 0 (1).Trong đó, a² + ab + b² là một ví dụ về công thức đặc biệt (a² + 2ab + b² = (a+b)²).Theo (1), ta có a² + ab + b² = (a+b)² - ab = 0.(a+b)² = ab.Vì ab là một số thực, nên ab ≥ 0.(a+b)² = ab ≥ 0. Do đó a+b ≥ 0.Khi đó, ta có: (a+b)² + ab = 0. Nhưng theo bất đẳng thức về số thực, ta có (a+b)² + ab ≥ 0.Vậy ta suy ra (a+b)² + ab = 0.Điều này có nghĩa là (a+b) = 0 và ab = 0.Kết hợp với a+b ≥ 0, ta có a+b = 0.Vậy ta suy ra a = -b.Từ đó ta suy ra a = b.Vậy ta đã chứng minh rằng a = b.Để giải câu hỏi 2, ta có:Ta có a³ + 3a² + 4a - 2 = 0 và b³ - 3b² + 4b - 7 = 0.Ta cộng hai phương trình trên hai vế, ta được: a³ + b³ + 3a² - 3b² + 4a + 4b - 9 = 0.Vào y = a + b, ta được: y³ + 3(y-2)² + 4(y-1) - 9 = 0.Đặt t = y - 1, ta được phương trình t³ + 3t² + 4t - 9 = 0.Phương trình t³ + 3t² + 4t - 9 = 0 có thể được giải bằng phương pháp chia tỉ lệ tác tử, hoặc sử dụng định lí Gauss.Ta tìm được một nghiệm t ≈ 1.5.Vậy y = t + 1 ≈ 1.5 + 1 = 2.5.Suy ra a + b = y ≈ 2.5.Câu trả lời cho câu hỏi 2 là a + b ≈ 2.5.
Đỗ Bảo Việt
Câu 2: Để tính a + b, ta thay a3+ 3a2+ 4a - 2 =0 vào b3- 3b2 + 4b - 7 =0. Khi đó, ta có a3 + 3a2 + 4a - 2 + b3 - 3b2 + 4b - 7 = 0. Gom nhóm các thành phần cùng hệ số, ta có (a3 + b3) + 3(a2 + b2) + 4(a + b) - 9 = 0. Đồng thời, (a3 + b3) + 3(a2 + b2) + 4(a + b) - 9 = 0. Từ đó suy ra (a3 + b3) + 3(a2 + b2) + 4(a + b) = 9. Để thuận tiện tính toán, ta thay (a + b) = S. Khi đó, ta có (a3 + b3) + 3(a2 + b2) + 4S = 9. Tiếp theo, ta thay (a3 + b3) = (a + b)(a2 - ab + b2). Thay vào biểu thức trên, ta có (a + b)(a2 - ab + b2) + 3(a2 + b2) + 4S = 9. Kênh đề biểu thức, ta có S(a2 - ab + b2) + 3(a2 + b2) + 4S = 9. Thu gọn biểu thức, ta có S(a2 - ab + b2) + 3(a2 + b2) = 9 - 4S. Từ đó suy ra S(a2 - ab + b2 - 4) + 3(a2 + b2) = 9 - 4S. Tiếp theo, ta có S = (9 - 4S) / (a2 + b2 - ab - 4). Cuối cùng, ta tính được giá trị của a + b bằng S.
Đỗ Hồng Đạt
Câu 2: Để tính a + b, ta thay a3+ 3a2+ 4a - 2 =0 vào b3- 3b2 + 4b - 7 =0. Khi đó, ta có (a3+ 3a2+ 4a - 2) + (b3- 3b2 + 4b - 7) = 0 + 0 = 0. Từ đó suy ra a3+ 3a2 + b3- 3b2 + 4a + 4b - 9 = 0. Đồng thời, (a3+ 3a2+ 4a - 2) + (b3- 3b2 + 4b - 7) = 0 + 0 = 0. Từ đó suy ra (a3 + b3) + 3(a2 - b2) + 4(a + b) - 9 = 0. Để thuận tiện tính toán, ta thay (a + b) = S. Khi đó, ta có a3 + b3 = 9 - 3(a2 - b2) - 4S. Tiếp theo, ta có (a3 + b3) = (a + b)(a2 - ab + b2). Thay vào biểu thức trên, ta có (a + b)(a2 - ab + b2) = 9 - 3(a2 - b2) - 4S. Từ đó suy ra S(a2 - ab + b2) - 3(a2 - b2) = 9 - 4S. Tiếp theo, ta có S(a2 - ab + b2 - 4) - 3(a2 - b2) = 9. Tiếp theo, ta có S(a2 - ab + b2 - 4) = 3(a2 - b2) + 9. Tiếp theo, ta có S = (3(a2 - b2) + 9) / (a2 - ab + b2 - 4). Cuối cùng, ta tính được giá trị của a + b bằng S.
Đỗ Hồng Đạt
Câu 1: Giả sử a và b khác nhau. Khi đó, ta có a3 + a khác b3 + b. Từ đó suy ra (a3 + a) - (b3 + b) khác 0. Mà theo giả thiết 1, ta có a3 + a = b3 + b = 3, nên (a3 + a) - (b3 + b) = 3 - 3 = 0. Mâu thuẫn. Vậy giả sử a và b khác nhau dẫn đến mâu thuẫn, nên ta kết luận a=b.
Đỗ Minh Đức
Câu 1: Để chứng minh rằng a=b, ta giả sử a và b khác nhau. Khi đó, ta có a3 + a khác b3 + b. Tuy nhiên, theo giả thiết 1, ta có a3 + a = 3 và b3 + b = 3, suy ra a3 + a = b3 + b. Do đó, giả sử a và b khác nhau dẫn đến mâu thuẫn, nên ta kết luận a=b.