Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau.
Có ai có thể hỗ trợ mình với câu hỏi này được không? Mình thực sự đang cần tìm câu trả lời gấp lắm!
Các câu trả lời
Câu hỏi Toán học Lớp 10
Câu hỏi Lớp 10
Bạn muốn hỏi điều gì?
Đỗ Thị Hạnh
Không gian mẫu: \(9.9.9.9.9=9^5\)
Chọn 3 chữ số từ 9 chữ số {1;2;...;9} có \(C_9^3\) cách
TH1: 1 chữ số lặp 3 lần, 2 chữ số có mặt 1 lần
Chọn 3 vị trí cho chữ số lặp 3 lần: \(C_5^3\) cách
Chọn 2 vị trí còn lại cho 2 chữ số kia: \(2!\) cách
TH2: 2 chữ số lặp 2 lần, 1 chữ số có mặt 1 lần
Chọn vị trí cho các chữ số lặp 2 lần: \(C_5^2.C_3^2\) cách
Còn lại 1 vị trí, có đúng 1 cách chọn cho chữ số còn lại
\(\Rightarrow C_9^3.\left(C_5^3.2!+C_5^3.C_3^2.1\right)\) số thỏa mãn
Xác suất: \(P=\dfrac{C_9^3.\left(C_5^3.2!+C_5^2.C_3^2.1\right)}{9^5}=\dfrac{1400}{19683}\)