Lớp 1
Lớp 1điểm
11 tháng trước
Đỗ Đăng Hạnh

Vật để cố định đã lâu, không thay đổi, được gọi là gì ? Lưu bútLưu vongLưu giữLưu cữu
Mình đang trong tình trạng khẩn cấp cần giải quyết câu hỏi này, Bạn nào thông thái giúp mình với, mình sẽ biết ơn lắm!

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Phương pháp giải:

Phương pháp 1: Duyệt từng phương án để tìm câu trả lời chính xác.

Phương pháp 2: Sử dụng kiến thức về các từ ngữ để đưa ra câu trả lời.

Câu trả lời: Lưu giữ.

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 3Trả lời.

Công thức số học áp dụng cho vật để cố định đã lâu, không thay đổi là lưu giữ.

Hãy giúp mọi người biết câu trả lời này thế nào?
31 vote
Cảm ơn 1Trả lời.

Nếu một vật đã cố định từ lâu và không thay đổi thì được gọi là lưu vong.

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 1Trả lời.

Vật để cố định đã lâu, không thay đổi, được gọi là lưu bút.

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 0Trả lời.

Để giải bất đẳng thức ( x - 3 ) .(x - 5 ) < 0, ta sử dụng định lí về tích và chất của số âm và số dương.

Phương pháp giải:
1. Tìm các điểm chia trục x thành các khoảng: x = 3 và x = 5.
2. Chọn một điểm bất kỳ từ mỗi khoảng ở trên để kiểm tra điều kiện bất đẳng thức.
3. Xác định điều kiện của x để bất đẳng thức ( x - 3 ) .(x - 5 ) < 0 thành hiện thực.

Câu trả lời:
Phương trình ( x - 3 ) .(x - 5 ) = 0 có nghiệm x = 3 và x = 5.
Từ đó ta có 3 khoảng: (-∞, 3), (3, 5), (5, +∞).
Kiểm tra từng khoảng:
- Với khoảng (-∞, 3): Chọn x = 0 --> ( 0 - 3 ) .(0 - 5) = 15 > 0, không thỏa mãn.
- Với khoảng (3, 5): Chọn x = 4 --> (4 - 3) .(4 - 5) = -1 < 0, thỏa mãn.
- Với khoảng (5, +∞): Chọn x = 6 --> (6 - 3) .(6 - 5) = 3 > 0, không thỏa mãn.

Vậy, phương trình ( x - 3 ) .(x - 5 ) < 0 khi và chỉ khi x thuộc khoảng (3, 5). Đáp án là: 3 < x < 5.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 4Trả lời.
Câu hỏi Toán học Lớp 1
Câu hỏi Lớp 1

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.48674 sec| 2286.555 kb