Cho khối tứ diện đều \(ABCD\) cạnh \(a\). Chứng minh rằng thể tích của khối tứ diện đó bằng \(\frac{{{a^3}\sqrt 2 }}{{12}}\).
Chào cả nhà, mình đang gặp chút vấn đề khó khăn và thực sự cần sự giúp đỡ của mọi người. Ai biết chỉ giúp mình với nhé!
Các câu trả lời
Câu hỏi Toán học Lớp 11
- Tìm x biết pi+k2pi/3 trong đó pi khác kpi/2
- gọi G là trọng tâm của tứ diện ABCD . a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm...
- Trong kì thi thử THPT Quốc Gia, An làm để thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả...
- Số điểm biểu diễn của pt : \(2cosx-1=0\) trên đường tròn lượng giác là : A . 3 B. 4 C....
- Có 6 học sinh và 3 thầy giáo A, B, C ngồi trên một hàng ngang có 9 ghế. Số cách xếp chỗ ngồi cho 9...
- Một hộp đựng 5 tấm thể màu xanh đánh số thứ tự từ 1 đến 5 và 4 thẻ màu đỏ đánh số thứ...
- Cho hình chóp S.ABC có SA vuông góc (ABC) , tam giác ABC vuông tại B ,...
- Trong mặt phẳng tọa độ Oxy phép vị tự tâm O(0;0) tỉ số k = -5, biến đường thẳng d có phương trình : 2x + 3y - 4 = 0...
Câu hỏi Lớp 11
- Thí nghiệm Young về giao thoa ánh sáng thường được sử dụng để đo bước sóng của ánh...
- Chỉ ra nét độc đáo, khác lạ trong kết hợp từ “buồn điệp điệp” ở câu mở đầu...
- cảm nhận về anh chị về hai đoạn thơ sau : Sóng gợn tràng giang buồn điệp điệp Con thuyền xuôi...
- Khi điện phân một dung dịch muối ăn trong nước, người ta thu được khí hidro vào một bình có thể tích. Biết hằng số khí R...
- Hãy trình bày nguồn gốc, đặc điểm của một số vật nuôi địa phương và vật nuôi...
- Hai điện tích điểm q 1 và q 2 đặt cách nhau trong không khí một khoảng 30 cm, thì lực tương tác giữa chúng là F. Nếu đặt...
- Một bản mặt song song có bề dày 10cm, chiết suất n=1,5 được đặt trong không khí. Chiếu tới bản một tia sáng với góc tời...
- Ancol nào sau đây bị oxi hóa thành xeton? A. Butan-1-ol B. Propan-2-ol C. Propan-1-ol D. 2-metylpropan-1-ol
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để soạn bài "Em bé thông minh", bạn có thể thực hiện các bước sau:
1. Đọc và hiểu nội dung của truyện cổ tích "Em bé thông minh".
2. Phân tích các tình huống mưu trí, thông minh của em bé qua 4 lần thử thách.
3. Rút ra ý nghĩa của câu chuyện, nhấn mạnh vào tài trí của người lao động và tầm quan trọng của việc học hỏi từ thực tế cuộc sống.
Câu trả lời cho câu hỏi trên:
Câu hỏi này nhấn mạnh vào việc đánh giá sự thông minh, khôn ngoan của em bé thông minh trong truyện cổ tích. Qua 4 lần thử thách, em bé không những giải quyết thành công mọi tình huống mà còn sử dụng trí khôn ngoan học được từ dân gian. Điều này nổi bật tôn vinh tài trí của người lao động và đánh giá cao khả năng học hỏi từ cuộc sống thực tế. Như vậy, bài học mà chúng ta có thể rút ra từ truyện "Em bé thông minh" chính là sự linh hoạt, nhạy bén của con người khi đối diện với những thử thách và tình huống khó khăn.
Để giải bài toán trên, ta có thể sử dụng phương pháp tính thể tích khi biết cạnh của khối tứ diện.
Phương pháp 1:
Ta có công thức tính thể tích khối tứ diện đều là \(V = \frac{1}{3}S_{\text{đáy}} \times h\), trong đó \(S_{\text{đáy}}\) là diện tích của một tam giác đều có cạnh bằng cạnh của khối tứ diện, và \(h\) là chiều cao của khối tứ diện (khoảng cách từ đỉnh đến mặt đối diện).
Với khối tứ diện đều có cạnh \(a\), ta có:
- Diện tích của một tam giác đều có cạnh bằng cạnh của khối tứ diện: \(S_{\text{đáy}} = \frac{{\sqrt{3}}}{4}a^2\)
- Chiều cao của khối tứ diện: \(h = \frac{{\sqrt{2}}}{2}a\)
Thế vào công thức ta có:
\(V = \frac{1}{3} \times \frac{{\sqrt{3}}}{4}a^2 \times \frac{{\sqrt{2}}}{2}a = \frac{{a^3\sqrt{2}}}{12}\)
Vậy ta chứng minh được thể tích của khối tứ diện đều là \(\frac{{a^3\sqrt{2}}}{12}\).
Câu trả lời: Thể tích của khối tứ diện đều \(ABCD\) cạnh \(a\) là \(\frac{{a^3\sqrt{2}}}{12}\).
Phương pháp 2:
Một cách khác để giải bài toán này là sử dụng hình học và tính chất của khối tứ diện. Ta có thể chứng minh bằng cách sử dụng hệ số kích thước giữa các hình học để tính ra thể tích của khối tứ diện.
Nếu cần thêm phần giải thích chi tiết hơn, vui lòng cho biết để được hỗ trợ thêm.
{
"content1": "Gọi \(O\) là tâm của khối tứ diện \(ABCD\), ta có \(OA = OB = OC = OD = \frac{a\sqrt 2}{2}\) (bán kính của khối tứ diện).",
"content2": "Diện tích mặt cắt của khối tứ diện song song với mặt phẳng \(ABCD\) là \(S_{ab} = a^2\).",
"content3": "Theo công thức thể tích khối tứ diện: \(V = \frac{1}{3} \times S_{ab} \times h = \frac{a^2 \cdot a\sqrt 2}{6} = \frac{a^3\sqrt 2}{6}\).",
"content4": "Như vậy, ta có thể kết luận thể tích của khối tứ diện đều \(ABCD\) bằng \(\frac{{a^3\sqrt 2}}{6}\)."
}