Gọi M là trung điểm của đoạn thẳng AB và C là một điểm của đoạn thẳng đó.Cho biết AB = 6 cm; AC= a( cm) (0< a < 6) . Tính k/c CM.
A M C B A M C B Hoặc
Mọi người thân mến, mình đang trong tình thế khó khăn và rất cần sự giúp đỡ của Mọi người. Mọi người có thể dành chút thời gian giải đáp câu hỏi này của mình không?
Các câu trả lời
Câu hỏi Toán học Lớp 6
Câu hỏi Lớp 6
Bạn muốn hỏi điều gì?
Đỗ Thị Dung
Để giải bài toán trên, ta áp dụng định lý cạnh trong tam giác. Phương pháp giải 1:Ta có: CM = \(\frac{1}{2}AB\). Vì M là trung điểm của AB nên AM = MB = \(\frac{AB}{2} = \frac{6}{2} = 3\) cm.Đến giờ, chúng ta có thể tính được AM, sau đó ta thay vào AM rồi tính được MC.Phương pháp giải 2:Ta cũng có thể áp dụng hệ thức tam giác đồng dạng:\(\frac{AM}{AB} = \frac{MC}{AC}\),Suy ra \(\frac{3}{6} = \frac{MC}{a}\), từ đó suy ra \(MC=\frac{a}{2}\).Vậy kết quả là \(CM = \frac{a}{2}\).Đáp án: \(CM = \frac{a}{2}\).
Đỗ Hồng Huy
Theo định lý Pitago trong tam giác vuông ACM, ta có: AC^2 = AM^2 + CM^2. Thay các giá trị đã biết vào, ta suy ra CM = √(a^2 - 9) cm với a > 3 và a < 6.
Đỗ Thị Giang
Gọi x là chiều dài CM. Khi đó, ta có AM = BM = 3 cm. Áp dụng công thức định lý Pitago, ta có: x^2 + 3^2 = a^2. Suy ra, x = √(a^2 - 9) cm.
Đỗ Bảo Đức
Đặt CM = x cm. Ta có AM = BM = 3 cm. Với tam giác vuông ACM, ta có: AC^2 = AM^2 + CM^2. Thay vào giá trị đã biết, ta suy ra x = √(a^2 - 9) cm.
Đỗ Thị Huy
Với AB = 6 cm, ta có AM = BM = 3 cm. Gọi d là khoảng cách từ C đến trung điểm M. Theo định lý Pitago ta có: AC^2 = AM^2 + CM^2. Suy ra, CM = √(AC^2 - AM^2) = √(a^2 - 9) cm.