Giải bất phương trình sau:
x2 - 8x - 9 ≥ 0
Mọi người ạ, mình rất cần sự giúp đỡ của các Bạn để giải quyết câu hỏi này. Cám ơn các Bạn nhiều lắm!
Các câu trả lời
Câu hỏi Toán học Lớp 9
- Viết lại câu: The last time it rained was two months ago A. It is two months since it has rained B. It is two...
- Cho đường tròn bán kính (O; R). Từ một điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC. Vẽ cát tuyến AMN không...
- Chứng minh đẳng thức A = √28 - √7 + √2 × √8-3√7 = 3
- Ai giúp mình đc ko ạ câu này khó quá cảm ơn các...
Câu hỏi Lớp 9
- 1/He will pass the entrance exam.His parents will give him a new cell...
- 24."What do you often do if you are sad?" Jim asked...
- Vì sao năm 1960 lại được gọi là “Năm châu Phi”? A. 17 nước châu Phi tuyên bố độc lập B. Chủ...
- Hãy nêu nguyên nhân và cách điều chỉnh mũi may bị sùi chỉ, rối chỉ, đứt chỉ, đường may bị dúm.
- 16. Many U.S cars.................. in Detroit, Michigan. A. manufacture B. have manufactured C. are manufactured D....
- MINIGAME ! AI NHANH VÀ ĐÚNG SẼ CÓ THƯỜNG (GP) Vào link : http://tracnghiemonline.vn Đăng...
- Để hoàn thành nhiệm vụ chung, vai trò của cách mạng miền Nam là: A. Miền Nam là tiền tuyến, có vai trò bảo vệ cách mạng...
- Viết đoạn văn nghị luận 7 - 10 câu suy nghĩ về lòng biết ơn và lời xin lỗi trong cuộc sống .
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Đỗ Bảo Hạnh
Phương pháp giải bất phương trình x2 - 8x - 9 ≥ 0 là:Bước 1: Giải phương trình x2 - 8x - 9 = 0 để tìm các điểm cực trị của đồ thị. Phương trình trên có dạng x2 - 8x - 9 = (x - 9)(x + 1) = 0. Từ đó suy ra x = 9 hoặc x = -1.Bước 2: Vẽ đồ thị y = x2 - 8x - 9. Đồ thị có 2 điểm cực trị là (-1, -18) và (9, 0).Bước 3: Xác định đồ thị của bất phương trình x2 - 8x - 9 ≥ 0 nằm trên trục hoành như thế nào từ đồ thị đã vẽ. Khi x nằm trong khoảng [-1, 9], đồ thị nằm phía trên hoặc trùng với trục hoành, do đó bất phương trình x2 - 8x - 9 ≥ 0 khi x thuộc khoảng [-1, 9].Vậy nên, nghiệm của bất phương trình x2 - 8x - 9 ≥ 0 là x ∈ [-1, 9].
Đỗ Đăng Vương
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp kỹ thuật số học. Dựa vào định lý điểm uốn, ta xác định được hình dáng của đồ thị của hàm số y = x^2 - 8x - 9. Sử dụng thông tin về điểm uốn và dấu của hàm số tại các điểm chính tắc, ta có thể xác định nghiệm của bất phương trình này.
Đỗ Huỳnh Đức
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp giải theo dấu của hàm số. Đầu tiên, tìm các điểm chính tắc của hàm số bằng cách giải phương trình x^2 - 8x - 9 = 0. Tiếp theo, sử dụng các khoảng điểm chính tắc và kiểm tra dấu của hàm số tại các khoảng này để xác định các nghiệm của bất phương trình.
Đỗ Đăng Đức
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta cần tìm các khoảng giá trị của x thỏa mãn điều kiện này. Đầu tiên, ta thực hiện phân tích biểu thức x^2 - 8x - 9 thành (x - 9)(x + 1) ≥ 0. Tiếp theo, ta vẽ đồ thị hàm số y = (x - 9)(x + 1) và xác định các khoảng giá trị của x mà hàm số này lớn hơn hoặc bằng 0.
Phạm Đăng Linh
Để giải bài toán trên, trước hết chúng ta cần xác định diện tích của hình vuông. Ta gọi cạnh hình vuông là a.Vì hai cạnh OB và OI có hiệu là 7 cm nên ta có thể lập phương trình: \(|OB - OI| = 7\) (vì chúng cùng nằm trên đường chéo của hình vuông nên chúng không thể âm) => \(|a - \frac{a\sqrt{2}}{2}| = 7\) (với \(OI = \frac{a\sqrt{2}}{2}\))Giải phương trình trên, ta sẽ tìm được cạnh của hình vuông là a = 14 cm.Diện tích của hình vuông là \(a^2 = 14^2 = 196 cm^2\).Vì bốn tam giác vuông bằng nhau, nên diện tích của mỗi tam giác vuông là \(\frac{196}{4} = 49 cm^2\).Do đó, diện tích của hình hoa (tính từ hình vuông ban đầu) sẽ là \(196 - 4 \times 49 = 196 - 196 = 0 cm^2\).Vậy diện tích của hình hoa là 0 cm2.