Giải bất phương trình sau:
x2 - 8x - 9 ≥ 0
Mọi người ạ, mình rất cần sự giúp đỡ của các Bạn để giải quyết câu hỏi này. Cám ơn các Bạn nhiều lắm!
Các câu trả lời
Câu hỏi Toán học Lớp 9
- cho pt x^2-2(m-1)x+m^2+2,m là tham số.tìm m để pt có 2no pb x1,x2 thỏa...
- Viết phương trình đường thẳng đi qua hai điểm A(2;-2) và B(-1;3).
- Câu 2: Cho đường thẳng y= 2mx + 3-m-x (d). Xác định m để: a, Đường thẳng d qua gốc toạ độ b, Đường...
- Tìm hai só nguyên dương a, c sao cho A = c2 - a2, B = 2c(a + c) là hai...
- tìm các giá trị của m để hệ phương trình sau vô nghiêm, vô số nghiệm 2(m+1)xX+(m+2)xY=m-3 (m+1)xX+mxY=3m+7
- Phòng Giáo Dục và Đào Tạo Huyện Phù Ninh ...
- Bài 20. Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2) a. Chứng minh 3 điểm A, B ,D thẳng...
- Chỗ hai số a,b không âm. Chứng minh: a+b/2>=√ab(bất đẳng thức cô si cho hai số không âm)
Câu hỏi Lớp 9
- Liên hệ cho biết các vấn đề môi trường đặt ra và các khó khăn chung của tỉnh...
- Trong bài thơ con cò nhà thơ Chế Lan Viên '' Con dù lớn vẫn là con của mẹ Đi suốt đời lòng...
- Hãy tìm cách so sánh khoảng cực cận của mắt em với khoảng cực cận của mắt một bạn bị cận thị và khoảng cực cận của mắt...
- Một cậu bé nhìn thấy cái kén cùa con bướm. Một hôm cái kén hở ra...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Phương pháp giải bất phương trình x2 - 8x - 9 ≥ 0 là:
Bước 1: Giải phương trình x2 - 8x - 9 = 0 để tìm các điểm cực trị của đồ thị. Phương trình trên có dạng x2 - 8x - 9 = (x - 9)(x + 1) = 0. Từ đó suy ra x = 9 hoặc x = -1.
Bước 2: Vẽ đồ thị y = x2 - 8x - 9. Đồ thị có 2 điểm cực trị là (-1, -18) và (9, 0).
Bước 3: Xác định đồ thị của bất phương trình x2 - 8x - 9 ≥ 0 nằm trên trục hoành như thế nào từ đồ thị đã vẽ. Khi x nằm trong khoảng [-1, 9], đồ thị nằm phía trên hoặc trùng với trục hoành, do đó bất phương trình x2 - 8x - 9 ≥ 0 khi x thuộc khoảng [-1, 9].
Vậy nên, nghiệm của bất phương trình x2 - 8x - 9 ≥ 0 là x ∈ [-1, 9].
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp kỹ thuật số học. Dựa vào định lý điểm uốn, ta xác định được hình dáng của đồ thị của hàm số y = x^2 - 8x - 9. Sử dụng thông tin về điểm uốn và dấu của hàm số tại các điểm chính tắc, ta có thể xác định nghiệm của bất phương trình này.
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp giải theo dấu của hàm số. Đầu tiên, tìm các điểm chính tắc của hàm số bằng cách giải phương trình x^2 - 8x - 9 = 0. Tiếp theo, sử dụng các khoảng điểm chính tắc và kiểm tra dấu của hàm số tại các khoảng này để xác định các nghiệm của bất phương trình.
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta cần tìm các khoảng giá trị của x thỏa mãn điều kiện này. Đầu tiên, ta thực hiện phân tích biểu thức x^2 - 8x - 9 thành (x - 9)(x + 1) ≥ 0. Tiếp theo, ta vẽ đồ thị hàm số y = (x - 9)(x + 1) và xác định các khoảng giá trị của x mà hàm số này lớn hơn hoặc bằng 0.
Để giải bài toán trên, trước hết chúng ta cần xác định diện tích của hình vuông. Ta gọi cạnh hình vuông là a.
Vì hai cạnh OB và OI có hiệu là 7 cm nên ta có thể lập phương trình: \(|OB - OI| = 7\) (vì chúng cùng nằm trên đường chéo của hình vuông nên chúng không thể âm) => \(|a - \frac{a\sqrt{2}}{2}| = 7\) (với \(OI = \frac{a\sqrt{2}}{2}\))
Giải phương trình trên, ta sẽ tìm được cạnh của hình vuông là a = 14 cm.
Diện tích của hình vuông là \(a^2 = 14^2 = 196 cm^2\).
Vì bốn tam giác vuông bằng nhau, nên diện tích của mỗi tam giác vuông là \(\frac{196}{4} = 49 cm^2\).
Do đó, diện tích của hình hoa (tính từ hình vuông ban đầu) sẽ là \(196 - 4 \times 49 = 196 - 196 = 0 cm^2\).
Vậy diện tích của hình hoa là 0 cm2.