Lớp 8
20điểm
3 năm trước
Trần Thanh Hà

Chứng minh rằng nếu p và p² + 8 là các số nguyên tố thì p² + 2 cũng là số nguyên tố
Có ai ở đây rành về vấn đề này không nhỉ? Mình thật sự cần một tay giúp để giải quyết nó, Bạn nào có thể giúp được không?

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Giả sử p là số nguyên tố, ta đi chứng minh rằng p² + 2 cũng là số nguyên tố. Vì p là số nguyên tố nên p ≠ 2, vậy p là số lẻ. Ta có thể viết p² + 8 = (p² + 2) + 6. Vì p là số lẻ nên p² + 2 cũng là số lẻ. Như vậy, nếu p² + 2 là số nguyên tố thì p² + 8 cũng là số nguyên tố. Tuy nhiên, giả thiết p và p² + 8 là các số nguyên tố là sai (vì p² + 8 không phải là số nguyên tố). Vậy ta không thể chứng minh được rằng nếu p và p² + 8 là các số nguyên tố thì p² + 2 cũng là số nguyên tố.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 1Trả lời.

Giả sử p là số nguyên tố, ta đi chứng minh rằng p² + 2 cũng là số nguyên tố. Vì p là số nguyên tố nên p ≠ 2, vậy p là số lẻ. Ta có thể viết p² + 8 = (p + 2)(p - 2) + 12. Vì p là số lẻ nên p + 2 và p - 2 là 2 số chẵn liên tiếp. Khi đó, (p + 2)(p - 2) là một tích của 2 số chẵn liên tiếp, nên nó chia hết cho 2. Mà p² + 8 không chia hết cho 2 (vì nếu chia hết thì p cũng chia hết cho 2, mâu thuẫn với giả thiết p là số lẻ). Vậy giả thiết p và p² + 8 là các số nguyên tố là sai. Từ đó suy ra, nếu p và p² + 8 là các số nguyên tố thì p² + 2 không phải là số nguyên tố.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 2Trả lời.

Giả sử p là số nguyên tố, ta đi chứng minh rằng p² + 2 cũng là số nguyên tố. Vì p là số nguyên tố nên p ≠ 2, vậy p là số lẻ. Chia p² + 8 cho p ta được thương là p + 8/p. Vì p là số nguyên tố nên p là ước số của p² + 8. Mà p ≠ 2 nên p không chia hết cho 2. Do đó, p không chia hết cho p² + 8. Khi đó, p + 8/p không phải là số nguyên. Vậy giả thiết p và p² + 8 là các số nguyên tố là sai. Từ đó suy ra, nếu p và p² + 8 là các số nguyên tố thì p² + 2 không phải là số nguyên tố.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 2Trả lời.

Để chứng minh rằng nếu p và p² + 8 là các số nguyên tố thì p² + 2 cũng là số nguyên tố, ta có thể sử dụng phương pháp phản chứng.

Giả sử rằng p và p² + 8 là các số nguyên tố và p² + 2 không phải là số nguyên tố.

Nếu p² + 2 không phải là số nguyên tố, tức là nó có thể phân tích thành tích của hai số nguyên dương khác nhau: p² + 2 = a * b, với a và b là các số nguyên dương và 1 < a ≤ b < p² +2.

Ta sẽ xem xét 2 trường hợp:

Trường hợp 1: a = p. Trong trường hợp này a là số nguyên tố và 1 < a ≤ p < p² + 2. Từ đó suy ra rằng b = (p² + 2) / p ≤ (p² + 2) / 2 < p. Nhưng điều này mâu thuẫn với giả sử ban đầu rằng p là số nguyên tố.

Trường hợp 2: 1 < a < p. Trong trường hợp này a không phải là số nguyên tố mà là một số hợp số. Từ đó ta suy ra rằng b = (p² + 2) / a cũng là một số hợp số. Nhưng lại mâu thuẫn với giả sử ban đầu rằng p² + 2 không phải là số hợp số.

Do đó, nếu p và p² + 8 là các số nguyên tố thì p² + 2 cũng là số nguyên tố.

Vậy câu trả lời cho câu hỏi trên là:
Nếu p và p² + 8 là các số nguyên tố thì p² + 2 cũng là số nguyên tố.

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 5Trả lời.
Câu hỏi Toán học Lớp 8
Câu hỏi Lớp 8

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.46403 sec| 2259.906 kb