cho tam giác abc cân tại a có góc abc bằng 50 độ.
a. Tính số đo các góc còn lại của tam giác ABC.
b. Hai đường cao BM và CN của tam giác ABC cắt nhau tại H. Chứng minh BM=CN.
c. chứng minh tam gác BHC cân và AH là tia phân giác của góc BAC.
Hello mọi người, mình đang khá gấp gáp để tìm câu trả lời. Bạn nào có kinh nghiệm chia sẻ cho mình với nhé!
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
Phạm Đăng Đức
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
=>\(\widehat{ACB}=50^0\)
ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}=180^0-2\cdot50^0=80^0\)
b: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
\(\widehat{NBC}=\widehat{MCB}\)(ΔABC cân tại A)
Do đó: ΔNBC=ΔMCB
=>CN=MB
c: ΔNBC=ΔMCB
=>\(\widehat{NCB}=\widehat{MBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC