Cho a+b+c=1 và 1/a + 1/b + 1/c =0. Tính a^2 + b^2 + c^2
Hey, cộng đồng tuyệt vời này ơi! Mình cần một ít hỗ trợ từ mọi người với câu hỏi này. Người nào đó có thể tham gia và giúp đỡ mình chứ?
Các câu trả lời
Câu hỏi Toán học Lớp 8
- Nung Kali clorat (KClO3) theo phản ứng sau: ...
- Bài 5. Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ...
- Bn nào biết Fanfic nào của BTS mà hay hok???
- phân tích đa thức thành nhân tử x^4-2x^3+2x-1
- Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất a) Bao...
- DIEN :in, at , on , after , under , between , beside, among , out of , above . vi sao ? I LOST MY KEYS SOMEWHERE...
- Giải phương trình: x3 - x2 +x -1=0
- 1) Tam giác ABC có AB = 15 cm , AC = 18 cm . Trên các tia AB, AC lần lượt lấy các...
Câu hỏi Lớp 8
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Phương pháp giải:
Ta có hệ phương trình:
a + b + c = 1
1/a + 1/b + 1/c = 0
Ta sẽ chuyển vế trong phương trình thứ 2 và nhân với abc:
1/a + 1/b + 1/c = 0
=> (ab + ac + bc)/abc = 0
=> ab + ac + bc = 0
(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc)
Với a + b + c = 1 và ab + ac + bc = 0, ta có:
1 = a^2 + b^2 + c^2
Vậy a^2 + b^2 + c^2 = 1
Đáp án: a^2 + b^2 + c^2 = 1
Đặt S = a^2 + b^2 + c^2. Ta có a + b + c = 1 và ab + bc + ca = 1. Áp dụng công thức (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca), suy ra S = 1^2 - 2*1 = 1.
Giả sử a, b, c là nghiệm của hệ phương trình a + b + c = 1 và 1/a + 1/b + 1/c = 0. Ta có ab + bc + ca = 0. Từ đó, a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) = 1 - 2*0 = 1.
Từ a + b + c = 1 và 1/a + 1/b + 1/c = 0, ta có ab + bc + ca = 0. Đặt p = a + b + c = 1, q = ab + bc + ca = 0. Đến đây, a^2 + b^2 + c^2 = p^2 - 2q = 1^2 - 2*0 = 1.
Ta có a + b + c = 1 và 1/a + 1/b + 1/c = 0. Từ 1/a + 1/b + 1/c = 0 suy ra ab + bc + ca = 0. Đặt x = ab, y = bc, z = ca thì x + y + z = 0 và x + y + z = ab + bc + ca = 0. Áp dụng công thức (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) ta được a^2 + b^2 + c^2 = (a+b+c)^2 - 2(ab+bc+ca) = 1^2 - 2(0) = 1.