Lớp 10
Lớp 1điểm
10 tháng trước
Đỗ Hồng Long

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, có A(1;4), B(2;-3), C(1;-2), D(-1;3m+3) a, Tìm toạ độ trọng tâm G của Tam giác ABC b, Tìm m để ba điểm A,B,D thẳng hàng
Mình đang trong tình trạng khẩn cấp cần giải quyết câu hỏi này, Bạn nào thông thái giúp mình với, mình sẽ biết ơn lắm!

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Để giải bài toán trên, ta thực hiện các bước sau:

a. Tìm tọa độ trọng tâm G của tam giác ABC:
Tọa độ trọng tâm G của tam giác ABC được tính bằng trung bình cộng của tọa độ ba đỉnh A, B, C:
G($\bar{x}$, $\bar{y}$) = ($\frac{x_A + x_B + x_C}{3}$, $\frac{y_A + y_B + y_C}{3}$)

Tính tọa độ điểm G:
G($\bar{x}$, $\bar{y}$) = ($\frac{1+2+1}{3}$, $\frac{4+(-3)+(-2)}{3}$) = ($\frac{4}{3}$, $-\frac{1}{3}$)

Vậy tọa độ trọng tâm G của tam giác ABC là G($\frac{4}{3}$, $-\frac{1}{3}$)

b. Tìm m để ba điểm A, B, D thẳng hàng:
Để ba điểm A, B, D thẳng hàng, ta cần kiểm tra điều kiện định lý thẳng hàng 3 điểm. Nếu ba điểm A, B, D thẳng hàng, ta sẽ có tỉ lệ giữa các vector AB và AD bằng nhau.

Vector AB: $\vec{AB}$ = $\begin{pmatrix}2-1 \\ -3-4\end{pmatrix}$ = $\begin{pmatrix}1 \\ -7\end{pmatrix}$

Vector AD: $\vec{AD}$ = $\begin{pmatrix}-1-1 \\ 3-(4m+3)\end{pmatrix}$ = $\begin{pmatrix}-2 \\ 3-4m\end{pmatrix}$

Để ba điểm A, B, D thẳng hàng, ta cần có tỉ lệ:
$\frac{1}{-2}$ = $\frac{-7}{(3-4m)}$

Suy ra: $-2 = \frac{7}{4m-3}$

Từ đó, giải phương trình trên để tìm ra giá trị của m.

Đó là cách giải bài toán trên.

Hãy giúp mọi người biết câu trả lời này thế nào?
21 vote
Cảm ơn 8Trả lời.

b, Để ba điểm A, B, D thẳng hàng, ta cần tính diện tích tam giác ABC theo công thức S = 1/2 |x1(y2-y3) + x2(y3-y1) + x3(y1-y2)| và đặt S = 0 để tìm được m.

Hãy giúp mọi người biết câu trả lời này thế nào?
31 vote
Cảm ơn 2Trả lời.

a, Trọng tâm G của tam giác ABC có tọa độ G((1+2+1)/3, (4-3-2)/3) = G(4/3, -1/3).

Hãy giúp mọi người biết câu trả lời này thế nào?
31 vote
Cảm ơn 0Trả lời.

b, Sử dụng công thức tính diện tích tam giác ABC: S = 1/2 |x1(y2-y3) + x2(y3-y1) + x3(y1-y2)|. Đặt S = 0 và thay vào ta có: |1(-3+2) + 2(-2-4) + 1(4-(-3m-3))|/2 = 0. Giải phương trình này ta tìm được m.

Hãy giúp mọi người biết câu trả lời này thế nào?
41 vote
Cảm ơn 1Trả lời.

a, Dùng công thức tọa độ trọng tâm G: G((x1+x2+x3)/3, (y1+y2+y3)/3) => G((1+2+1)/3, (4-3-2)/3) => G(4/3, -1/3).

Hãy giúp mọi người biết câu trả lời này thế nào?
11 vote
Cảm ơn 1Trả lời.
Câu hỏi Toán học Lớp 10
Câu hỏi Lớp 10

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.62105 sec| 2299.695 kb