Bài tập tự luậnBài tập 9 trang 128 toán lớp 11 tập 1 Chân trời:Cho hình hộp ABCD.A'B'C'D'....

Câu hỏi:

Bài tập tự luận

Bài tập 9 trang 128 toán lớp 11 tập 1 Chân trời: Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của AB và A'B' và O là một điểm thuộc miền trong của mặt bên CC'D'D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.

Câu trả lời:
Người trả lời: GV. Đỗ Đăng Đạt
Để giải bài toán này, chúng ta cần sử dụng các khái niệm về đường thẳng chứa trung điểm và việc chứng minh giao tuyến của mặt phẳng với các mặt của hình hộp.

Phương pháp giải:
1. Kẻ đường thẳng MN đi qua trung điểm M của đoạn AB
2. Kẻ đường thẳng NO đi qua O và song song với MN, cắt các cạnh D'C' và DC lần lượt tại P và Q
3. Xét NP và B'C' cắt nhau tại H, cũng với MQ và BC cắt nhau tại F. Từ đó ta có thể suy ra các đường thẳng giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.
4. Tiếp tục như vậy với các đường thẳng giao tuyến khác.

Câu trả lời:
Giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp là:
- Giao tuyến của (OMN) với (ABCD) là MQ
- Giao tuyến của (OMN) với (A'B'C'D') là NP
- Giao tuyến của (OMN) với (CDD'C') là PQ
- Giao tuyến của (OMN) với (ABB'A') là MN
- Giao tuyến của (OMN) với (BCC'B') là IF
- Giao tuyến của (OMN) với (ADD'A') là HG

Vậy đó là cách giải bài toán trên. Mong rằng bạn đã hiểu rõ và có thể tự giải các bài tập tương tự.
Bình luận (0)
Nhấn vào đây để đánh giá
Thông tin người gửi
0.48474 sec| 2178.477 kb