Bài 38 : Cho tam giác ABC vuông tại A, AB = 4a, AC = 5a. Tính :
Câu hỏi:
Bài 38 : Cho tam giác ABC vuông tại A, AB = 4a, AC = 5a. Tính :
Câu trả lời:
Người trả lời: GV. Đỗ Đăng Ánh
Phương pháp giải:Ta sử dụng định lí Pythagore trong tam giác vuông để tính độ dài cạnh còn lại của tam giác ABC. Theo định lí Pythagore, ta có:\(BC^2 = AB^2 + AC^2\)\((BC)^2 = (4a)^2 + (5a)^2\)\((BC)^2 = 16a^2 + 25a^2\)\((BC)^2 = 41a^2\)\(BC = \sqrt{41}a\)Vậy cạnh còn lại của tam giác ABC là \(\sqrt{41}a\).Câu trả lời: \(BC = \sqrt{41}a\)
Câu hỏi liên quan:
- Bài 32 : Cho ba điểm M, N, P phân biệt. Phát biểu nào sau đây là đúng?
- Bài 33 : Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây là đúng?
- Bài 34 : Cho các điểm A, B, O. Khẳng định nào sau đây là đúng?
- Bài 35 : Cho ba điểm A, B, M phân biệt. Điều kiện cần và đủ để M là trung điểm của đoạn thẳng AB là...
- Bài 36 : Cho tam giác ABC. Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là :
- Bài 37 : Cho tứ giác ABCD, O là trung điểm của AB.Chứng minh:
- Bài 39 : Cho tam giác đều ABC cạnh a. Tính:
- Bài 40 : Cho tam giác ABC thoả mãn
- Bài 41 : Cho hai vectơ a, bkhác vectơ 0. Chứng minh rằng nếu hai vectơ cùng hướng thì
- Bài 42 : Cho hình vuông ABCD cạnh a. Tính:
- Bài 43 : Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm...
- Bài 44 : Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thoả mãn
- Bài 45 :Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm G
- Bài 46 : Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm...
Bình luận (0)